
近段时间数据分析越来越多火了,大家都越来越依赖数据分析,认为数据分析总能做出正确的选择。这里来说几个数据分析失败的案例降降温!
数据分析失败案例之数据给企业带来的噩梦
上海柴远森先生出差来北京的时候,在西单买了一本市场调查的书。3个月以后,他为这本书付出了三十几万元的代价。更可怕的是,这种损失还在继续,除非柴先生的宠物食品公司关门,否则那本书会如同魔咒班般伴随着他的商业生涯。
“最近两年,宠物食品市场空间增加了两三倍,竞争把很多国内企业逼到了死角。”《中国财富》在2005年北京民间统计调查论坛上见到了柴先生,“渠道相近,谁开发出好的产品,谁就有前途。以前做生意靠经验,我觉得产品设计要建立在科学的调研基础上。去年底,决定开始为产品设计做消费调查。”
为了能够了解更多的消费信息,柴先生设计了精细的问卷,在上海选择了1000个样本,并且保证所有的抽样在超级市场的宠物组购物人群中产生,内容涉及:价格、包装、食量、周期、口味、配料等6大方面,覆盖了所能想到的全部因素。沉甸甸的问卷让柴氏企业的高层着实振奋了一段时间,谁也没有想到市场调查正把他们拖向溃败。
2005年初,上海柴氏的新配方、新包装狗粮产品上市了,短暂的旺销持续了一星期,随后就是全面萧条,后来产品在一些渠道甚至遭到了抵制。过低的销量让企业高层不知所措,当时远在美国的柴先生更是惊讶:“科学的调研为什么还不如以前我们凭感觉定位来的准确?”到2005年2月初,新产品被迫从终端撤回,产品革新宣布失败。
柴先生告诉《中国财富》:“我回国以后,请了十多个新产品的购买者回来座谈,他们拒绝再次购买的原因是宠物不喜欢吃。”产品的最终消费者并不是“人”,人只是一个购买者,错误的市场调查方向,决定了调查结论的局限,甚至荒谬。
经历了这次失败,柴先生认识到了调研的两面性,调研可以增加商战的胜算,而失败的调研对企业来说是一场噩梦。
不完备甚至不科学的数据采集给企业带来损失的不只是柴先生自己,在这次论坛上记者还见到了来自东北的北华饮业策划总监刘强,他们在进行新产品开发过程中进行了系统的口味测试,却同样蒙受了意想不到的失败。
数据分析失败案例之中国人不喝冰红茶
一间宽大的单边镜访谈室里,桌子上摆满了没有标签的杯子,有几个被访问者逐一品尝着不知名的饮料,并且把口感描述出来写在面前的卡片上……这个场景发生在1999年,当时任北华饮业调研总监的刘强组织了5场这样的双盲口味测试,他想知道,公司试图推出的新口味饮料能不能被消费者认同。
此前调查显示:超过60%的被访问者认为不能接受“凉茶”,他们认为中国人忌讳喝隔夜茶,冰茶更是不能被接受。刘强领导的调查小组认为,只有进行了实际的口味测试才能判别这种新产品的可行性。
等到拿到调查的结论,刘强的信心被彻底动摇了,被测试的消费者表现出对冰茶的抵抗,一致否定了装有冰茶的测试标本。新产品在调研中被否定。
直到2000年、2001年,以旭日升为代表的冰茶在中国全面旺销,北华饮业再想迎头赶上为时已晚,一个明星产品就这样穿过详尽的市场调查与刘强擦肩而过。说起当年的教训,刘强还满是惋惜:“我们举行口味测试的时候是在冬天,被访问者从寒冷的室外来到现场,没等取暖就进入测试,寒冷的状态、匆忙的进程都影响了访问者对味觉的反应。测试者对口感温和浓烈的口味表现出了更多的认同,而对清凉淡爽的冰茶则表示排斥。测试状态与实际消费状态的偏差让结果走向了反面。”
“驾御数据需要系统谋划。”好在北华并没有从此怀疑调研本身的价值,“去年,我们成功组织了对饮料包装瓶的改革,通过测试,我们发现如果在塑料瓶装的外型上增加弧型的凹凸不仅可以改善瓶子的表面应力,增加硬度,更重要的是可以强化消费者对饮料功能性的心理认同。”
采访中,北京普瑞辛格调研公司副总经理邵志刚先生的话似乎道出了很多企业的心声“调研失败如同天气预报给渔民带来的灾难,无论多么惨痛,你总还是要在每次出海之前,听预报、观天气、看海水。”
数据分析失败案例之3个小细节1千万大风险
普瑞辛格调研公司给《中国财富》出示了两组数据,来说明调研的严谨性。同样的调研问卷,完全相同结构的抽样,两组数据结论却差异巨大。邵志刚介绍说,国内一家知名的电视机生产企业,2004年初设立了20多人的市场研究部门,就是因为下面的这次调查,部门被注销、人员被全部裁减。
问题:列举您会选择的电视机品牌?
其中一组的结论是:有15%的消费者选择本企业的电视机;另一组的得出的结论却是:36%的消费者表示本企业的产品将成为其购买的首选。巨大的差异让公司高层非常恼火,为什么完全相同的调研抽样,会有如此矛盾的结果呢?公司决定聘请专业的调研公司来进行调研诊断,找出问题的真相。
普瑞辛格的执行小组受聘和参与调查执行的访问员进行交流,并很快提交了简短的诊断结论:第二组在进行调查执行过程中存在误导行为。调研期间,第二组的成员佩带了公司统一发放的领带,而在领带上有本公司的标志,其尺寸足以让被访问者猜测出调研的主办方;其次,第二组在调查过程中,把选项的记录板(无提示问题)向被访问者出示,而本企业的名字处在侯选题板的第一位。以上两个细节,向被访问者泄露了调研的主办方信息,影响了消费者的客观选择。
这家企业的老总训斥调研部门的主管:“如果按照你的数据,我要增加一倍的生产计划,最后的损失恐怕不止千万。”
市场调查是直接指导营销实践的大事,对错是非可以得到市场验证,只是人们往往忽视了市场调查本身带来的风险。一句“错误的数据不如没有数据”,包含了众多中国企业家对数据的恐慌和无奈。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18