京公网安备 11010802034615号
经营许可证编号:京B2-20210330
近段时间数据分析越来越多火了,大家都越来越依赖数据分析,认为数据分析总能做出正确的选择。这里来说几个数据分析失败的案例降降温!
数据分析失败案例之数据给企业带来的噩梦
上海柴远森先生出差来北京的时候,在西单买了一本市场调查的书。3个月以后,他为这本书付出了三十几万元的代价。更可怕的是,这种损失还在继续,除非柴先生的宠物食品公司关门,否则那本书会如同魔咒班般伴随着他的商业生涯。
“最近两年,宠物食品市场空间增加了两三倍,竞争把很多国内企业逼到了死角。”《中国财富》在2005年北京民间统计调查论坛上见到了柴先生,“渠道相近,谁开发出好的产品,谁就有前途。以前做生意靠经验,我觉得产品设计要建立在科学的调研基础上。去年底,决定开始为产品设计做消费调查。”
为了能够了解更多的消费信息,柴先生设计了精细的问卷,在上海选择了1000个样本,并且保证所有的抽样在超级市场的宠物组购物人群中产生,内容涉及:价格、包装、食量、周期、口味、配料等6大方面,覆盖了所能想到的全部因素。沉甸甸的问卷让柴氏企业的高层着实振奋了一段时间,谁也没有想到市场调查正把他们拖向溃败。
2005年初,上海柴氏的新配方、新包装狗粮产品上市了,短暂的旺销持续了一星期,随后就是全面萧条,后来产品在一些渠道甚至遭到了抵制。过低的销量让企业高层不知所措,当时远在美国的柴先生更是惊讶:“科学的调研为什么还不如以前我们凭感觉定位来的准确?”到2005年2月初,新产品被迫从终端撤回,产品革新宣布失败。
柴先生告诉《中国财富》:“我回国以后,请了十多个新产品的购买者回来座谈,他们拒绝再次购买的原因是宠物不喜欢吃。”产品的最终消费者并不是“人”,人只是一个购买者,错误的市场调查方向,决定了调查结论的局限,甚至荒谬。
经历了这次失败,柴先生认识到了调研的两面性,调研可以增加商战的胜算,而失败的调研对企业来说是一场噩梦。
不完备甚至不科学的数据采集给企业带来损失的不只是柴先生自己,在这次论坛上记者还见到了来自东北的北华饮业策划总监刘强,他们在进行新产品开发过程中进行了系统的口味测试,却同样蒙受了意想不到的失败。
数据分析失败案例之中国人不喝冰红茶
一间宽大的单边镜访谈室里,桌子上摆满了没有标签的杯子,有几个被访问者逐一品尝着不知名的饮料,并且把口感描述出来写在面前的卡片上……这个场景发生在1999年,当时任北华饮业调研总监的刘强组织了5场这样的双盲口味测试,他想知道,公司试图推出的新口味饮料能不能被消费者认同。
此前调查显示:超过60%的被访问者认为不能接受“凉茶”,他们认为中国人忌讳喝隔夜茶,冰茶更是不能被接受。刘强领导的调查小组认为,只有进行了实际的口味测试才能判别这种新产品的可行性。
等到拿到调查的结论,刘强的信心被彻底动摇了,被测试的消费者表现出对冰茶的抵抗,一致否定了装有冰茶的测试标本。新产品在调研中被否定。
直到2000年、2001年,以旭日升为代表的冰茶在中国全面旺销,北华饮业再想迎头赶上为时已晚,一个明星产品就这样穿过详尽的市场调查与刘强擦肩而过。说起当年的教训,刘强还满是惋惜:“我们举行口味测试的时候是在冬天,被访问者从寒冷的室外来到现场,没等取暖就进入测试,寒冷的状态、匆忙的进程都影响了访问者对味觉的反应。测试者对口感温和浓烈的口味表现出了更多的认同,而对清凉淡爽的冰茶则表示排斥。测试状态与实际消费状态的偏差让结果走向了反面。”
“驾御数据需要系统谋划。”好在北华并没有从此怀疑调研本身的价值,“去年,我们成功组织了对饮料包装瓶的改革,通过测试,我们发现如果在塑料瓶装的外型上增加弧型的凹凸不仅可以改善瓶子的表面应力,增加硬度,更重要的是可以强化消费者对饮料功能性的心理认同。”
采访中,北京普瑞辛格调研公司副总经理邵志刚先生的话似乎道出了很多企业的心声“调研失败如同天气预报给渔民带来的灾难,无论多么惨痛,你总还是要在每次出海之前,听预报、观天气、看海水。”
数据分析失败案例之3个小细节1千万大风险
普瑞辛格调研公司给《中国财富》出示了两组数据,来说明调研的严谨性。同样的调研问卷,完全相同结构的抽样,两组数据结论却差异巨大。邵志刚介绍说,国内一家知名的电视机生产企业,2004年初设立了20多人的市场研究部门,就是因为下面的这次调查,部门被注销、人员被全部裁减。
问题:列举您会选择的电视机品牌?
其中一组的结论是:有15%的消费者选择本企业的电视机;另一组的得出的结论却是:36%的消费者表示本企业的产品将成为其购买的首选。巨大的差异让公司高层非常恼火,为什么完全相同的调研抽样,会有如此矛盾的结果呢?公司决定聘请专业的调研公司来进行调研诊断,找出问题的真相。
普瑞辛格的执行小组受聘和参与调查执行的访问员进行交流,并很快提交了简短的诊断结论:第二组在进行调查执行过程中存在误导行为。调研期间,第二组的成员佩带了公司统一发放的领带,而在领带上有本公司的标志,其尺寸足以让被访问者猜测出调研的主办方;其次,第二组在调查过程中,把选项的记录板(无提示问题)向被访问者出示,而本企业的名字处在侯选题板的第一位。以上两个细节,向被访问者泄露了调研的主办方信息,影响了消费者的客观选择。
这家企业的老总训斥调研部门的主管:“如果按照你的数据,我要增加一倍的生产计划,最后的损失恐怕不止千万。”
市场调查是直接指导营销实践的大事,对错是非可以得到市场验证,只是人们往往忽视了市场调查本身带来的风险。一句“错误的数据不如没有数据”,包含了众多中国企业家对数据的恐慌和无奈。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20