
大数据融合将解锁物联网真正潜力_数据分析师培训
随着洛杉矶CES大会的落幕,局势渐渐明朗:2015年将成为物联网元年。从牙刷可以安排体检到瑜伽垫可以实时分析你的动作,今年的CES大会上,3000多家企业推出了超过2000件新产品。
对于物联网这个概念我们显然已经不陌生了。实际上,Gartner公司预测物联网设备的数量在2020年将增长到250亿。
由于便捷性的驱动和对曾经无法实现技术的迷恋,消费者将持续补充他们的电子产品仓库。随着联网设备增多,他们将会把目光转向商业,来提高互联性和用户体验。超前的用户体验意味着为这些设备创造出一条新的路——无缝互联。
现在可以编程让咖啡机在特定时间制作好咖啡。咖啡机可以和用户的床垫相连,感知到她起床并发送消息到手机上询问今天想要哪种口味的咖啡,未来还会在所用咖啡豆储存量不足时自动从亚马逊订购。
随着智能设备带来指数型增长的用户数据,企业必须重新思考储存、整理、利用它们的方法。实时处理和分析将成为常态,没有到位的基础去处理结构化和非结构化的数据,将落后于人。那么,IT和市场精英们到底该不该在物联网领域占领先机呢?
同一性是解锁物联网真正潜力的关键
通过尝试将所有数据点的产生从设备回到从用户身份上,企业将能够为用户个人创造出真正个性化定制的体验。这种单个用户身份数据的调和和属性可以让用户的牙刷顺利和她的手机“交流”。
如果没有一个明确的系统适当的来给用户个人记录附加信息,数据只能是碎片式的,本质上是没用的。如果每个设备上获取的数据点都封装在一个独立的库里,用户体验将脱节得越来越严重。
企业保持数据整洁、有序、从连接的第一点到用户身份的附带是最好的方法。这个过程从注册开始。当用户从注册开始,即使是在传统网站注册或是通过社交账户登陆的,用户记录就必须开始。
从这点来说,企业需要记录用户的任何行为。它与用户身份相连接,使设备能够知晓用户偏好并和别的设备进行交流。
例如,如果一个人买了三星手机,他就成了三星生态系统中的一环。如果用户把手机当成智能控制中心来控制智能电视、远程洗衣、通过第三方程序发送文件到无线打印机,用户可以根据第一次登入信息用相同的登录证书来做到这些。
所有数据点都能够聚合和转回用户记录,企业用此来建立唯一的1:1的用户体验。
维护统一数据库
除了确保所有返回的数据点都归于用户记录之外,企业必须确保他们有足够安全的“房子”来存储这些数据。利用动态数据库,超越用户基本属性,使建立精确的客户档案和吸引人的用户体验成为现实,让企业投入巨资创造连接的设备。
一种先进的数据分析软件数据库建立在一个动态模式上,可以很容易以优化的方式地处理大量非结构化的用户数据。当用户确定需要此项业务时,客户数据被自动索引。这些信息在一个有组织、易于浏览的方式中非常有用,使营销人员能够针对用户量身定制,并针对他们行动。
有了系统的整合,组织,大数据分析安全存储和访问客户数据,品牌可以给生活带来更多宏伟的愿景。 随着互联网的不断发展,包括连接设备,它可以帮助工程师了解用户身份的演变,包括支付信息,生物和社会图形数据。通过其核心的身份,物联网才能真正改变我们的日常生活。
毕竟,如果不能共同工作,那数十亿智能设备的目的是什么呢?没有数据融合,物联网只是纸上谈兵。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30