
如何采集和分析法律大数据_数据分析师培训
第一步 数据采集与归类
在中国裁判文书网采集裁判文书,目前是不能直接进行复制的,即使采取某些技术手段复制了,也需要重新建立文档进行粘贴、为文档重命名。可能您觉得没神马,但这样来回重复几千下还是让人崩溃呀。(自我反省,我是不是太懒了?)可有什么方法可以简便快速的搞定裁判文书的采集呢?
1、安装印象笔记
请保证您的电脑上(不分系统)有印象笔记,红圈中可爱的小象就是印象笔记了。
2、按照省份新建若干笔记本
对实现担保物权特别程序的大数据分析,少不了要区分省份进行对比,因此,我以省份为项新建了若干笔记本,这些笔记本又组成一个实现担保物权的笔记本组。以后我对实现担保物权采集的全部素材就统统包含在这个笔记本组里了。
3、安装印象笔记剪藏功能,使之能在浏览器上进行裁判文书采集分类
图片中黄色圈部分就是印象笔记的剪藏功能按钮了。如图,我在浏览器上将需要收集的裁判文书打开,点击黄圈部分剪藏功能按钮,然后就会出现图右边印象笔记对话框。确定绿点选定在蓝色圈的“网页正文”选项上,然后按照裁判文书省份选定之前新建的笔记本,最后点击确认。
这样,越过了裁判文书网无法复制的障碍,抛弃了重复复制、粘贴、建立文档等繁杂步骤,每份裁判只需要轻点几下就乖乖收入到了我的印象笔记实现担保物权笔记本组中,并且已经按照省份做好了分类。
例如,在安徽省笔记本中,每份裁定书自动成为一条笔记,红色部分自动统计该笔记本中的笔记条数,说明安徽省共116份裁定文书(帮我省了统计各省案件数量的活)。
自此,裁判文书的收集、分类完成。在有印象笔记软件的电脑、手机、ipad上,只要我登陆自己的账户,就可以查看收集全部裁判文书,随时随地工作。
第二步 分项统计及分析
1、分析项信息录入
本次实现担保物权大数据报告,我们设定了15个BI分析项,包括申请人性质、担保物权类型、审理形式、是否进行财产保全等。这个时候,excel出场了。
如图黄色部分,我将需要分析的项在excel的第一行列出,并将每个省份作为一个工作表(红色部分),在数据分析软件excel中录入分析信息。更好的是,有时候需要直接复制裁判文书内容到excel中,印象笔记完全可以满足我。注意,分析表中没有案号一项,我认为案号的录入也是相当大的工作量(再次自省,是不是太懒了?),那如何解决?
2、不用单独费力录入案号,印象笔记来帮忙
如何将excel的每个案件信息与印象笔记中的每份裁判相对应?如果靠excel最左列数字,用数的方法对应印象笔记中的裁判文书顺序,第19份还好,第99份呢,第199份呢、甚至第1999份呢?
这个问题,印象笔记目录功能可以解决。
以广东省为例,将广东省笔记本内的笔记全选(快捷键:苹果系统command+A,windows系统下control+A),就会出现右边红色部分“创建目录”,点击创建目录。这样,广东省的全部裁判文书就按照顺序形成如下的目录笔记。
在这样的操作下,需要您保证excel分析信息录入是按照每个笔记本中的每条笔记顺序进行的,则excel的行号减1(第一行是分析项名称)就与目录中的红色圈中的数字对应。找到对应的目录数字后,只需要轻轻一点目录数字后面绿色部分,印象笔记自动为您跳转到该条笔记,无需您费力在几百甚至上千个案例中寻找。
3、筛选器,只看想看到的信息
信息录入后,要对各项信息进行归纳、分析、统计,筛选器在这个时候堪比贴心小棉袄。如图红色部分,对第一行分析项设置数据下的筛选器功能,这样在分析项中就会出现下拉三角形标志。
如下图,如果我需要统计该省份采用合议庭进行审理的案件数量,点击筛选器的下拉三角形,勾选合议,则表中仅出现审理形式为合议庭的案件信息。这样,分析、统计变得一目了然。
解决了裁判文书采集、归类,信息录入及筛选,您的大数据分析准备工作已经基本完毕。接下来,就是利用收集的裁判文书、通过分析项信息的对比、统计,进行成果提炼、分析等工作,最后形成大数据报告。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23