
如何利用大数据进行市场营销?五种常见应用
知识就是力量。知识尤其对于那些知识销售者更显重要。营销人员深谙此道,并且知道过去几年,大数据的到来为什么是他们的一大幸事。当今世界,技术驱动大数据产生了很多创意营销,这也产生了无尽的信息需求。
这是一个对数据迫切需要的时代。需要量化的情况变得越来越多,一个人的生活的各个方面都可以被测量、存储、计算和分析,并得出有价值的结论。这样的结论对很多人包括广告商、政治家、社会学家都有帮助。这样关于个人数据量的快速增长,这是前所未有的。
所有这些数据就像是一个能梦想成真的营销者,能精确定位潜在客户。而在以前要实现它是很不容易的。技术人员现在可以使用大数据找到目标客户,在十年前这是不可能的。
传统教科书的营销方式,如电子邮件、订阅、新闻已经被基于网络浏览习惯挖掘的现代市场营销策略所替代,而现在实现这些却很容易。
所以,在不同的领域如何利用大数据进行市场营销?我们列举了最常见的应用。
应用1:谷歌趋势视角
作为展示国内及国际市场密切关注的谷歌趋势结果。这是当今最直观的、简易的、基于大数据来源的在线分析平台。该平台可以让您查看到每天的搜索热词,并且对比这些热词搜索量的历史趋势。利用大数据分析出新趋势是一个简单的应用,它可以帮助我们将长期营销资源投入到人们每天关注的话题上。
应用2:定义你的ICP
ICP即完美客户画像,可以利用大数据进行开发。利用数据信息来定义目标受众的年龄、住址、教育、收入、收入等特征。还可以用更多的细节信息来进行购买用户的分层,而我们更容易获得用户上网行为习惯、在线搜索数据等细节信息。
一旦定位到了理想的目标客户,你将处于有利位置来调整你的销售信息。例如,针对用户姓名、生命阶段特征来向客户推送相关的销售信息,让目标客户真实感受到公司的用心良苦。
应用3:确定客户的购买要素
现在营销重点大部分放在创建和发布传播内容上。但什么样的要素有助于把潜在客户变成真正购买客户?是什么要素使他们真正有意愿购买?而这些问题在几年前一直没有答案,现在只是需要一个点击信息。点评软件帮助你识别这类的内容,来引导目标客户,并转换成真实销售。这样我们就能真正量化哪些是有价值的营销内容。
应用4:更多的预测数据分析
基于大数据进行预测能产生更有意义的分析结果。很多企业在利用客户关系管理软件更有效地预测用户行为。这不只是知道一个潜在客户,同时包括如何引导一个客户,他们将如何反应,他们下一步要干什么。这个过程被成为优先评价指标,它涉及到利用IT技术,通过历史数据来识别趋势,推断未来可能的结果和关键点。该技能能帮助企业显著提升质量和降低成本。
应用5:即时分析应用
大数据不能按照每个季度、每周、每天的节奏去利用,甚至认为它只是一个工具。我们需要利用大数据做“分钟”-即刻响应,立即调整支点。针对访客的实时访问行为,我们应该即刻地、自动地引导他们到相关网页,并提供信息。 例如,电子商务商家应该自动跟踪用户浏览行为,分析哪些是用户不买的产品,哪些产品已经放入用户满载的购物车。荷兰皇家航空公司实现实时数据采集与分析,通过针对没有完成预定订单的用户,来自动发送提醒邮件,明显提升了网站的点击率和转化率。大数据还帮助他们预测流失客户,并通过优化用户体验降低用户流失的风险。
总而言之,大数据将帮助你定位市场需求,掌握市场趋势,并做出准确、有效的决策。大数据绝对会成为每一位营销专家的致胜利器。
如何最佳利用日益增多的海量数据信息,是一个非常艰巨的工作。然而,基于大数据而实施营销战略所带来的回报,会使你所有的努力都值得付出。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19