
3大逻辑称霸大数据邮件营销——数据分析师
大数据和大逻辑,正在成为我们通向成功的路径。正如在实践邮件营销的道路中,邮件营销生态系统也正在变得更加复杂,也开始拥有越来越多具有价值的数据点,那么接下来邮件营销的道路究竟在什么方向呢?今天,我们就一起看看,在目前市场环境背景下,邮件营销运作主要遵循哪些大逻辑概念?
1.生命周期逻辑
尽管理解和利用生命周期的逻辑病不是一个新的概念,许多电子邮件营销者现在都开始应用它,欣赏它带来的价值。生命周期邮件通常只占整体邮件发送量的15%,但据称可以产生收入的35%。
从客户和产品这两个最普通的视角,你就可以多种方式看到生命周期逻辑。一些品牌已经应该产品生命周期逻辑,通过针对他们的最畅销产品简单地发送补货邮件提醒用户重新回来购买,取得了巨大的成功。但是这种类型的逻辑也并适用于所有的产品。
曾经有人坚持说,他们的产品不需要“更换提醒”邮件。但是相反,我认为无论是长久耐用品,快消品,或者是介于两者之间的商品,每个产品都有一个生命周期:积极的运动者需要以规律的频率更换自己的跑鞋,汽车拥有者需要每隔一些年更换汽车等等。
2.情境逻辑
我相信,一部分市场营销者知道了facebook将终结@facebook.com后缀的电子邮件地址的消息,之后@facebook.com的用户能够设置帐号,使@facebook.com邮箱中的邮件被转发到他们设置的其他邮箱。
因此,类似于在去年雅虎宣布停止中国雅虎邮箱服务的事件后,我们建议,品牌通过给使用中国雅虎邮箱地址注册的用户发送关怀类邮件,或在邮件内增加“更换注册邮箱地址”按钮等方式,鼓励用户及时更换注册邮箱地址,以确保用户可以继续收到发送的邮件。市场营销者也可以对这部分用户邮件地址数据等进行更新,重新激活这些邮件用户等。抓住某些具体事件或时间框架,市场营销者可以利用情境逻辑做很多的事情,虽然这种情景逻辑不一定经常可以利用。
3.行为逻辑
根据您的用户行为定制化邮件并不是一个新的概念,但是如果在其中,特别是加入一些预测方法以推测下一个购买和互动,情况就可能变得非常复杂。比较基础的应用就是针对“浏览-购物车丢弃行为”的用户购物车丢弃提醒邮件。而更深层次的应用,如Booking等一些旅游品牌可以利用有关目的地搜索或费用、星级、便利性等信息为规划下一封邮件的内容提供指导。考虑到行为数据体积量是不断呈增长趋势的,如果企业可以通过设置逻辑参数,借助智能化的BI计算预测模型,配以脱离人工操作的自动化邮件触发,这样对邮件营销的效率和效益都是大大提升。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08