
大数据时代企业如何赢得“数据战” _数据分析师
几年前,公司专注于信息技术和互联网技术,而现如今,公司更多关注的是云计算、移动技术和社交技术。不管是上述哪类技术的发展趋势,都对公司数据的处理和分析造成了很多问题。数据的多样性和数据的安全问题,以及数据复杂性和数据量的迅猛增长已经成为公司面临的诸多挑战。为了对公司的真实需求得到进一步的明确与认知,我们有必要在大数据时代的背景之下分析清楚公司面临的这些困难究竟是什么。
在存储和处理大数据的问题上,公司的困难程度的分布相对而言比较平均,数据的安全性以18.98%的比例排名第一,其次是系统性能的瓶颈问题,占百分之18.42%,第三则是数据类型的多样化问题,占百分之18.01%。还存在一些其他问题,例如数据分析效率低下(约百分之15.24%)、数据读写困难(约14.96%)和储存压力(约14.40%)。
在选项之间存在的间隙是非常小的,但也显示出这六个问题都是公司的数据存储和处理的难处,尤其是公司数据安全问题的难度。在大数据环境下,很多公司都在重新制定信息安全策略,以保护数据资源不被侵犯。
在充满挑战的大数据时代,公司面临的困难还可以体现在一些其他方面。据统计,缺乏专业的大数据方向的人才占公司面临所有困难的26.99%,由此可以看出,这是公司所面临的最大的挑战,其次是分析和加工非结构化数据,约是总体的26.65%,常规技术难以处理的比例约为25.27%,另外还有新技术门槛过高的问题,占总体的21.13%。
大数据方向的专业人才的缺乏在未来会成为阻碍大数据市场的发展前途的重要因素。根据一些专家的预测来看,当进入15年以后,全世界会增加四百四十万个大数据方面的就业岗位,而届时25%的公司将建立了首席数据官这个岗位。这种大数据岗位对复合型人才的需求十分旺盛,要求上岗者能够在数理统计、分析数据、学习机器、处理自然语言和整合知识等方面都有所涉猎。今后,大数据的人才缺口将达到百万,对社会、高校和公司培养这些人才的需求将会激增,因为需要这三者进行联合开发和挖掘培养。
显然,大多数公司都并不擅长处理文字、图片和视频等一系列的非结构化数据类型。关于这点,可以从某些机构的数据地图调查结果得出,公司首先需要解决的就是如何利用BI对这些非结构化数据进行分析,这个需求的比例达到总体的38.96%。第二重要的就是和其他数据源的整合,这点占到了32.50%的比例,而数据保存和数据的安全性问题则各占14.72%和13.82%。由此可以看出,对非结构化数据的控制和把握对公司的兴衰成败是至关重要的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23