京公网安备 11010802034615号
经营许可证编号:京B2-20210330
网站如何进行用户数据分析_数据分析师培训
一、用户的来源。
1.访问我们网站的用户都是从那些网站过来的?这项数据可以从网站后台技术记录的LOG中分析得出。(虚拟网络来源)
2.访问我们网站的用户都是来自现实中的哪些省份?这项数据可以从网站后台的IP地址记录中分析出。(真实地域来源)
二、网站造访人次。
1.网站每月造访总人次。这项数据来源于后台的LOG分析。
2.网站每日造访总人次。这项数据来源于后台的LOG分析。(以上均以IP个数为准)
3.网站每日每个栏目、每篇文章的造访人次。这项数据来源于后台的LOG分析。
三、用户年龄。
访问我们网站的用户都是在哪些年龄段?具体可以分为15—18岁,18—21岁,21—25岁,26—30岁,30岁—35岁,35岁以上。这项数据来源于网站的人工调查分析。
四、用户职业。
访问我们网站的用户职业分布。大致可分为:学生、上班族白领、自由职业者、政府机关干部、IT卖场服务、高科技产业服务等等。可具体根据网站的定位来进行细分化调查。这项数据来源于网站的人工调查分析。
五、用户习惯。
1.用户浏览我们网站的习惯,主要包括:新闻栏目内容的排列,服务操作的使用是否方便、整体业面的布局使用是否方便、浏览新闻的时候是觉得哪里不适合您的浏览习惯?等等。具体可以根据各自网站的特点进行细分化。这项很重要,大部分用户在互联网上已经养成了一定的浏览和访问的习惯。符合他们习惯的设计服务,会粘住这些用户。这项数据来源于网站的人工调查分析,与网站后台技术分析。
2.用户习惯于每天什么时间浏览我们的网站?也就是大部分访问网站的登陆时间。{CDA数据分析师培训}这项数据必须要求精确。模糊、大概、可能这样的词语不可以使用,否则这项数据将失去意义。这项数据来源于网站的人工调查分析,与网站后台技术分析的结合。
3.用户习惯于在我们的网站上停留多久?也就是大部分用户在我们网站直到关掉我们站点中间停留的时间,这部分数据可以充分的说明,我们网站的内容做的是否对用户的胃口,内容的质量是否对比上周有提高?内容是否具有粘滞力。这是最有说服力,也最客观的分析数据。这项数据来源于网站的人工调查分析,与网站后台技术分析结合的方式来获得。
六、用户所最喜欢的网站服务。
用户最喜欢的网站服务是什么?是商城?是渠道信息?是RSS服务?是论坛社区?是硬件信息?是软件技术信息?等等……这项数据可以充分的了解我们的服务该朝哪个方向努力,该强加哪些方面。
七、用户最讨厌的网站服务。
1.用户最讨厌的网站服务是什么?是商城?是渠道信息?是RSS服务?是论坛社区?是硬件信息?是软件技术信息?等等……为什么讨厌?这点数据是我们如何提高和改变自己服务模式的重要依据。
2.每周评选网站做的最差的栏目,或者服务。让网站的用户来评选出,网站每周做的最差的是哪个栏目?为什么差?这个栏目由谁来负责?被用户评为最差的原因在哪里?这样分析讨论找出原因后,再进行评选,如果一个栏目连续几周内都被用户评为最差栏目,那么这个栏目的相关负责人就要受到相应的处罚。必须明确栏目与责任人的关系,否则到时候数据出来了也不好处理。如果处理之后还是最差,那么就是这个栏目本身定位就有问题。再开会讨论确立是否需要淘汰。
八、用户最喜欢的网站活动。
网站活动是聚集网站人气行之有效的手段,但是至于做什么活动?还是应该由网站的用户来说的算。通过充分的人工调查,了解了用户们最喜欢的活动,那么就可以在今后的工作计划中逐渐安排这些网站活动。以带动人气,提高访问。
九、用户的建议和意见整理。
在网站的显眼之处,留出一个用户可以直接留言给网站的管理者的留言板,这个留言板可以不对外。但务必每周将网站用户集中反馈上来的意见和建议都整理好,留做会议上讨论去粗取精,使网站的工作有明确的改进方向。
对于站长而言,不同的网站提供的内容和服务不同,用户行为分析的侧重点也不尽相同。但是,几乎所有的网站用户分析都是基于用户属性和用户详细行为来展开各种联系关系或逻辑推理分析。以上网站用户数据分析中是我自己地的一些见解,你觉得有哪些要补充的?欢迎与笔者探讨经验。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23