京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代:数据就是一切_数据分析师培训
互联网世界中的人与人交互信息、位置信息,企业交易信息等数据已经远远超越现有企业的承载能力。如何盘活这些数据资产,使其为国家治理、企业决策乃至个人生活服务,是大数据发展的核心议题。
7月25日,在一场名为“践行大数据”的大数据商业论坛上,来自大数据技术企业、电商、学界以及一些传统行业的专家对大数据的现状和未来发展各抒己见。
苏萌:大数据企业受到资本市场热捧
百分点集团创始人、董事长 苏萌
作为百分点集团的创始人和董事长,曾经的北京大学光华管理学院副系主任、博士生导师,有着美国康奈尔大学市场营销学博士头衔的苏萌,领导着国内领先的大数据技术与应用服务商企业,是国内知名的大数据营销专家。
“过去的一年里,大数据浪潮风起云涌,基于开源软件与系统的全球大数据生态链格局已基本形成,同时也开启了大数据时代面向企业客户的科技公司的新篇章。纵观全球大数据生态系统,底层是开源框架、开源数据库和开源计算软件和系统,在开源的底层基础上,在四大领域分别涌现出了一些优秀的新兴公司。这四个领域包括大数据基础技术、大数据分析、大数据应用、以及数据市场。这些公司凭借在大数据领域的技术和应用创新,迅猛发展,同时也受到资本市场的热捧。”苏萌说。
他举例,今年3月,创立于2008年的硅谷大数据软件创业公司Cloudera获得英特尔资本7.4亿美元的注资,估值41亿美元。今年7月,专注于可用性与数据安全优化的MapR获得了由谷歌资本领投的1.1亿美元D轮融资。这两家大数据创业公司都是围绕开源Hadoop技术建立起了自身业务,以2B技术服务的模式帮助其他公司对大数据进行分析与应用。在大数据分析领域,创立于2004年的情报分析公司Palantir已估值80亿美元,它的优势在于能够整合不同类型不同来源的海量数据,通过建模为反恐和财务事故等问题做出预警,美国的CIA和FBI都已成为它最忠实的客户。
此外,在应用领域,广告、营销、金融、教育等行业的大数据应用已遍地开花,其中DMP及广告定向数据公司eXelate通过大数据建模让DSP和广告商更深入地了解受众属性,也完成了总额超过3000万美元的三轮融资。在金融大数据应用领域,由前谷歌首席信息官创立的ZestFinance通过非金融数据结合机器学习和建模对个人进行信用风险评估,解决银行信用贷款等问题。第四个领域是数据市场和数据源,Bluekai作为代表性企业,是DataExchange和DMP的开拓者,今年2月被Oracle公司以4亿美元收购。Bluekai的优势在于提供一个数据管理平台,即DMP,帮助企业进行媒体和受众分析,同时建立数据交换中心,通过使用第三方数据来创建新的可扩展受众。百分点在基础技术、分析和应用三个领域均有所实践和探索。
通过产业格局分析,苏萌认为全球大数据生态系统未来存在六大趋势。首先是应用化。即从投入基础设施转向可执行的分析与应用的趋势。大数据将从概念测试进入到企业生产环境,能够迅速落地的应用将成为市场主导。其次是服务化,一切技术都将转换为服务,大家看到了SaaS, PaaS, IaaS的崛起,未来还会看到更多。第三,云端化。一切服务皆为云,在可预见的未来,所有企业数据和分析最终都会转移到云端。
除了这三个趋势,他认为,第四个趋势是整体化,大数据整体解决方案包括数据的获取、存储、整合、分析、可视化。第五个趋势是实用化,大数据分析包括从低到高的四个层次:描述性分析(发生了什么)、诊断性分析(为什么发生)、预测性分析(将会发生什么)、和建议性分析(该如何做)。最后一个趋势是低成本化。去年阿里系掀起了“去IOE”运动,阿里云的架构已不再采用IBM的小型机、Oracle的数据库、EMC的存储设备,但大多数企业不具有阿里的技术能力,这些企业需要2B技术服务企业的帮助来降低“去IOE”的技术和成本门槛。
“未来,谁能帮助数以千万计的广大企业级用户应用大数据技术,谁将有机会取代Oracle成为大数据时代2B领域的BAT。”苏萌认为。
陈宇新:大数据时代我们要有“数商”
上海纽约大学商学院副院长 陈宇新
“在这个大数据的时代,成功的背后灵魂是什么?这个灵魂就是我想讲的“数商”。这个‘商’不是商人的‘商’,而是‘智商’的‘商”,在大数据实在我们要有智商、情商,还要有数商。”上海纽约大学杰出全球商学讲席教授及上海纽约大学商学院副院长陈宇新这样认为。
他认为,数据思维有四个纬度:一是定量思维,就是说“一切皆可测”,所有的东西都要想着把它转化成数据测量出来。比如说一些大数据的项目试图把那些情感性的要素测量出来,测量优雅,或者是测量浪漫,这都是大数据技术要做到的。“不要想着只有实实在在的东西能测量,虚拟的不能测量,其实都是可以测量的,顾客的行为都可以表达出来”。
陈宇新认为,数据四维的第二个纬度是跨界思维,就是“一切或可联”,看似不相关的数据和行为,或许可以互相连起来,为预测和推荐,达到一个更好的效果。三是操作思维,就是一切要可行,就是要尽快到达实时的、低成本的实现。四是实验思维,要允许创新,允许实验,允许试错,而且通过实验来得出一个正确的或者是优化的解决方案。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27