京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据不仅是新科技,还是种革命性的概念
当世界卫生组织(WHO)在2014年10月公布伊波拉病毒(Ebola)在全球有8,997个感染病例,并夺走4,493条人命的警讯时,加拿大的Bio Diaspora公司运用地理资讯系统(GIS)结合大数据(big data),发布了一张动态全球病毒地图,预测下一个可能引爆伊波拉病毒的地区。
Bio Diaspora分析全球航班资讯、人口移动、温度、湿度变化等资讯,建立模型,找出下一个可能爆发感染的传染途径。就像2008年Google推出流感预测趋势(Google Flu Trends),透过分析使用者在各地区搜寻流感相关的关键字,来预测流感会爆发的地区。这些帮助人类“未卜先知”的工程,就是大数据的魅力。
与其说大数据是新科技,更正确地说,它是种革命性的概念。随着数位化、网络化,数据累积的速度超乎想像。举例来说,在Facebook上每10秒有 5,000多万则以上贴文、Apple Store每分鐘有5万个App被下载、Google每分鐘有400万笔关键字搜寻,这些惊人数字的背后,隐藏了巨大的商机、预测性以及决策的影响力。
根据国际数据资讯(IDC)预测,大数据技术与服务市场的年复合成长率为31.8%,市场规模至2016年将达到238亿美元(约新台币7,500亿元)。随着大数据成为显学,人力市场对相关人才的需求强烈,IT研究及顾问公司Gartner指出,全球至2015年因大数据所产生的IT技术职务,将有 440万个。麦肯锡(McKinsey)更预测,至2018年,单在美国就有14~18万的专业数据分析师职务需求量。
让数据个性化,推动服务升级
事实上,每个人随时随地都在被搜集数据。只要透过有系统地整理、运算与分析,就能解读顾客在想什么、需要什么,这些资讯将成为洞察使用者的最佳线索。
例如,澳洲的老牌酵母咸味酱Vegemite在2009年销售量大幅下滑,为了重新掌握消费者,委託IBM进行数据调查分析,包括部落格、论坛、网络新闻等等,总共蒐集了超过30种以上语言、50万笔数据,从中发现消费者对酱料的创新用法。于是Vegemite发动新的社群行销活动,让市佔率起死回升。这就是大数据的魔力,难怪美国政府将其定义为“未来的新石油”。
各行各业因大数据应用而成功预测结果、或力挽狂澜的案例不胜枚举。因成功切入市场而声名大噪,功典资讯总经理夏雨农分析,大数据是种“服务升级”,透过“个性化”数据,让塬始数据产生意义,再藉此赢得商机。以往空有数据,却无法区分“杂音”与“关键数据”,往往出现企业满手好牌却胡乱出招的状况。
目标是应用大数据的核心,例如是针对顶级客户推出更高单价商品、还是扩大客群与市佔率,这两个目标所设定的数据分析与解读面向就非常不同。
21世纪最性感的职业
至于因应大数据潮流所造就的新职种中,最具代表性的,莫过于数据科学家(data scientist),能透过电脑演算分析数据、解读意义,难怪《哈佛商业评论》(Harvard Business Review)将它称为“21世纪最性感的职业”。
而进入这一行,需要哪些能力?需具备统计学、数学、电脑演算程式技能。另外,因为数据来自企业各部门,更要有横向跨部门索求数据的沟通力,汇整数据的整合力,对于数据的好奇与洞察力。
毕竟,大数据的价值不在数据本身,而是如何从巨量数据中萃取出洞见。谁有这样的本领,谁就是当红炸子鸡!
Hot Job!
★数据科学家:
具备统计学、数学等专业,能将大量资讯运用电脑演算,转换成具有商业价值的数据,并具备优秀的沟通力,能分析、解释数据,影响企业决策。
★数据视觉化分析师:
将大量数据经过演算、建立预测模型, 再透过如Tableau、QlikView、Spotfire等工具,进行视觉化转换,强化数据的易读性。
★商业智慧分析师:
具备Hadoop、Hive及HBase等软体使用经验,能分析企业数据仓储的各种不同类型数据,从中洞察客户行为、市场趋势,进而拟定策略。
★数据管理师:
企业内所有数据的“进”与“出”,都需要经过他认证与管理。也必须确保数据的安全性,甚至具备数据备援的专业技能。
★数据工程师:
需懂数据库、数据结构、自然语言处理、数据採矿、数据模型等技术,协助建构大数据的数据平台架构。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27