京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据不仅是新科技,还是种革命性的概念
当世界卫生组织(WHO)在2014年10月公布伊波拉病毒(Ebola)在全球有8,997个感染病例,并夺走4,493条人命的警讯时,加拿大的Bio Diaspora公司运用地理资讯系统(GIS)结合大数据(big data),发布了一张动态全球病毒地图,预测下一个可能引爆伊波拉病毒的地区。
Bio Diaspora分析全球航班资讯、人口移动、温度、湿度变化等资讯,建立模型,找出下一个可能爆发感染的传染途径。就像2008年Google推出流感预测趋势(Google Flu Trends),透过分析使用者在各地区搜寻流感相关的关键字,来预测流感会爆发的地区。这些帮助人类“未卜先知”的工程,就是大数据的魅力。
与其说大数据是新科技,更正确地说,它是种革命性的概念。随着数位化、网络化,数据累积的速度超乎想像。举例来说,在Facebook上每10秒有 5,000多万则以上贴文、Apple Store每分鐘有5万个App被下载、Google每分鐘有400万笔关键字搜寻,这些惊人数字的背后,隐藏了巨大的商机、预测性以及决策的影响力。
根据国际数据资讯(IDC)预测,大数据技术与服务市场的年复合成长率为31.8%,市场规模至2016年将达到238亿美元(约新台币7,500亿元)。随着大数据成为显学,人力市场对相关人才的需求强烈,IT研究及顾问公司Gartner指出,全球至2015年因大数据所产生的IT技术职务,将有 440万个。麦肯锡(McKinsey)更预测,至2018年,单在美国就有14~18万的专业数据分析师职务需求量。
让数据个性化,推动服务升级
事实上,每个人随时随地都在被搜集数据。只要透过有系统地整理、运算与分析,就能解读顾客在想什么、需要什么,这些资讯将成为洞察使用者的最佳线索。
例如,澳洲的老牌酵母咸味酱Vegemite在2009年销售量大幅下滑,为了重新掌握消费者,委託IBM进行数据调查分析,包括部落格、论坛、网络新闻等等,总共蒐集了超过30种以上语言、50万笔数据,从中发现消费者对酱料的创新用法。于是Vegemite发动新的社群行销活动,让市佔率起死回升。这就是大数据的魔力,难怪美国政府将其定义为“未来的新石油”。
各行各业因大数据应用而成功预测结果、或力挽狂澜的案例不胜枚举。因成功切入市场而声名大噪,功典资讯总经理夏雨农分析,大数据是种“服务升级”,透过“个性化”数据,让塬始数据产生意义,再藉此赢得商机。以往空有数据,却无法区分“杂音”与“关键数据”,往往出现企业满手好牌却胡乱出招的状况。
目标是应用大数据的核心,例如是针对顶级客户推出更高单价商品、还是扩大客群与市佔率,这两个目标所设定的数据分析与解读面向就非常不同。
21世纪最性感的职业
至于因应大数据潮流所造就的新职种中,最具代表性的,莫过于数据科学家(data scientist),能透过电脑演算分析数据、解读意义,难怪《哈佛商业评论》(Harvard Business Review)将它称为“21世纪最性感的职业”。
而进入这一行,需要哪些能力?需具备统计学、数学、电脑演算程式技能。另外,因为数据来自企业各部门,更要有横向跨部门索求数据的沟通力,汇整数据的整合力,对于数据的好奇与洞察力。
毕竟,大数据的价值不在数据本身,而是如何从巨量数据中萃取出洞见。谁有这样的本领,谁就是当红炸子鸡!
Hot Job!
★数据科学家:
具备统计学、数学等专业,能将大量资讯运用电脑演算,转换成具有商业价值的数据,并具备优秀的沟通力,能分析、解释数据,影响企业决策。
★数据视觉化分析师:
将大量数据经过演算、建立预测模型, 再透过如Tableau、QlikView、Spotfire等工具,进行视觉化转换,强化数据的易读性。
★商业智慧分析师:
具备Hadoop、Hive及HBase等软体使用经验,能分析企业数据仓储的各种不同类型数据,从中洞察客户行为、市场趋势,进而拟定策略。
★数据管理师:
企业内所有数据的“进”与“出”,都需要经过他认证与管理。也必须确保数据的安全性,甚至具备数据备援的专业技能。
★数据工程师:
需懂数据库、数据结构、自然语言处理、数据採矿、数据模型等技术,协助建构大数据的数据平台架构。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22