
“大数据”营利的潜在风险_数据分析师
据美国《科学美国人》网站报道,在过去的几年中,“大数据”吸引了越来越多的关注。“大数据”逐渐成为一种产业,其通过“加工”来实现数据的增值,并试图带来一场科学领域的革命,以帮助人们创造一个更加美好的世界。不过,在“大数据”光鲜的背后,有着众多因混乱和烦杂而引起的大肆宣传,如二十世纪八九十年代的众多口号,令我们记忆犹新。自此,建立在强大的计算机软件和高等数学计算之上的“大数据”方式,逐渐取代了传统的科学方法。
数据收集、计算能力和搜索程序上的进步,为语言识别、语言翻译等领域带来了技术支撑。因此,人们对“大数据”的热情与日俱增。但是,“大数据”也可能会对科学形成伤害。因为它会诱使年轻人远离科学真理,并进而驱逐私利。
神经科学领域的一名博士后Fred,在进行研究的时候通常要处理大量的数据。在读完John Horgan教授的文献评论后,Fred提出了自己的观点:人们对“大数据”的热爱,会加剧科学领域的困境。Fred说:“几年前,神经科学领域较为出色的研究生都成为了教授,而稍微差点的研究生都向商业领域发展。但我认为,人才从科学界流失到商界,将成为2014年的科学新闻。”的确,科学界的人才流失将成为一个大趋势。这是因为,科学界并不会因为研究者开发出了新型优质的软件,而给予其大量的奖金,这也是科学界需要反思的地方。
除此之外,学术界和商界对研究质量的关注程度不同。在学术界,期刊杂志很关注那些研究成果,却并不在意这些结果是否是真实的。但在商界,企业都非常关注数据的真实性,这就为研究人员提供了一个鼓舞人心的工作环境。在商界,研究者可以花大量时间来编写代码和分析数据。而在学术界,教授们不得不用大量的时间来申请项目和回复邮件。
华盛顿大学的天体物理学博士Jake VanderPlas称,“大数据”应该成为科学领域的未来。他认为,在学术领域,有效的数据处理方式应该取代古典的研究模式。从粒子物理学到生物化学等领域,数据越来越成为一种有力的驱动力。VanderPlas表明,很多科研成果之所以变得越来越不可靠,一部分原因在于它们依赖于较差的书写和记录软件。如果擅长数据分析的研究者们能分享他们的方法,那么就能提升“危机的非再生性”。
但目前的问题是,学术界对数据分析人才的重视度要远远低于商界。当学术界还在慢步适应时,商界已经大力吸纳和奖励这些人才了。而结果显然是,出色的研究人员发现自己在学术界已无立足之地,所以都开始转向财大气粗的营利行业了。
“商界只希望知道数据的真实性”之类的言论,是滑稽和可笑的。因为对于商界,兜售产品胜于真理。但就像Fred所指出的,人们必须明确“营销”与“分析”之间的区别。当企业想把产品推销给消费者的时候,其营销手段显然不会是真理阐述。但当焦点转向企业的内部分析团队时,真理是极为重要的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-19偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12