
就业大数据:一眼看懂中国大学生就业现状_数据分析师培训
2014年是中国高等教育历史以来就业压力最大的一年,据教育部数据2014年中国高校毕业生将达到727万,为历史上最多的一年。从产业结构与学科结构结合的方式分析大学生就业的趋势,对于指导大学生就业具有重要现实的意义。
表一:2012年就业数据对比[1]
表一的第一列的计算方式是2012年分行业就业人数减去2011年分行业就业人数,第三列是2012年中国高校人才分学科培养人数。表一反映了目前中国每年以7%左右的经济增长速度可多容纳1000万人就业。本表中选取的行业均是可吸纳大学生就业的行业,餐饮、批发、运输等行业由于其特殊性则没有选取。
从表一中几列数据的具体对比中不难看出,目前高校的专业人才培养结构与产业人才需求结构存在一定的矛盾。一方面,产业人才需求不足,另外一方面相关人才供给不上。这是目前中国企业招人难、高校毕业生就业难的本质所在。
具体来看,中国的建筑业、制造业是新增吸纳就业的最多的两大行业,两大行业新增就业721万人,占中国整体就业人数的70.47%。换句话说,中国目前的支柱行业主要是建筑工程与工业制造,这两大行业属于劳动密集型产业,更多的需要一线建筑工人和一线生产工人。目前建筑工人的平均日薪较之前几年已经有非常大的提高,建筑工人全国平均最低日薪达到150元[1]。以东莞地区为代表的制造工业则存在常年的招工难。但是,高校目前培养的专科生从事这两大行业的意愿都相对较低,一方面的原因现在低技术含量的制造工业对年轻人缺乏吸引力,另外一方面,相对老一辈人能吃苦的精神来说现在的年轻人也不愿意从事劳动强度较高的建筑施工工作。
这就出现了中国式的就业矛盾,过高的期望值让相当比例的大学生找不到工作,而高速发展的产业却又招不到合适的人。
一、大学生就业的主力行业
从表一中不难看出,工业既需要高素质的技术性人才,也需要低素质的劳动力,而目前理科和工科的本专科学生加起来一共才137万,工业2012年新增就业人口435万。上述数据虽然不能直接证明理工科的学生供不应求,但是它说明工业仍然是吸纳大学生的最主要的行业之一。除开比较特殊的工业,目前金融行业、房地产行业、信息服务业、教育业、卫生业、文化娱乐业、政府及公共组织这几大白领行业是最具吸引力吸纳大学生求职的主力行业。
具体分析,目前多数“白领”行业人才供大于求,金融业、教育业、政府及公共组织、文化娱乐业、信息服务业等等都出现了供给严重过剩的状态。最为严重的是信息服务业、文化娱乐业、政府及公共组织。分析到具体的专业,计算机、英语、行政管理专业属于大学生就业难的重灾区。上述三大行业供求不平衡达218万人,这些专业的学生只能选择更低期望值的就业对象。这里不得不说到中国的文科大学生严重过剩的问题,法学、文学、教育学、经济学、管理学几大文科学科门类培养人数加起来达到433万人,占总大学生毕业总数的59.55%,这是一个令人震惊的数据,理工科学生一共仅占40.55%。按照中国的产业结构,几乎没有办法吸纳这么多的文科大学生就业,而大学教育又给予了这些文科大学生过高的期望值。
二、大学生容易就业的行业
目前人才供小于求的行业不多,从表一的数据来看,仅卫生业、房地产业人才的需求还不够。房地产业确实是吸纳大学生就业的主力行业,这与中国高房价和发达的基础建设行业密切相关,建筑土木系也确实是中国所有大学生就业环境最好的一大类专业。目前中国在建的工程量高达113万亿[2],相关的专业需求在未来十年始终会保持一个相对较高的增长空间。卫生业对人才的需求目前看来还不够,尤其是以乡镇为代表的公共医疗还有很大的发展空间,在老龄化人口越来越多的未来,中国的医疗行业还需要更多的相关人才。由于医学专业的培养难度大、时限长,扩招的难度也很大,所以医学类专业仍然具有较好的就业前景。
综上所述,大学生就业难是一个系统性问题,教育体制改革的重点必须从专业结构调整入手。值得欣喜的是,教育部目前已经着手开始探索职业教育、学术型教育两种高等教育方式,从中等教育阶段开始分流,探索人才培养的新模式、新结构是目前中国教育必须面临的改革难题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23