
就业大数据:一眼看懂中国大学生就业现状_数据分析师培训
2014年是中国高等教育历史以来就业压力最大的一年,据教育部数据2014年中国高校毕业生将达到727万,为历史上最多的一年。从产业结构与学科结构结合的方式分析大学生就业的趋势,对于指导大学生就业具有重要现实的意义。
表一:2012年就业数据对比[1]
表一的第一列的计算方式是2012年分行业就业人数减去2011年分行业就业人数,第三列是2012年中国高校人才分学科培养人数。表一反映了目前中国每年以7%左右的经济增长速度可多容纳1000万人就业。本表中选取的行业均是可吸纳大学生就业的行业,餐饮、批发、运输等行业由于其特殊性则没有选取。
从表一中几列数据的具体对比中不难看出,目前高校的专业人才培养结构与产业人才需求结构存在一定的矛盾。一方面,产业人才需求不足,另外一方面相关人才供给不上。这是目前中国企业招人难、高校毕业生就业难的本质所在。
具体来看,中国的建筑业、制造业是新增吸纳就业的最多的两大行业,两大行业新增就业721万人,占中国整体就业人数的70.47%。换句话说,中国目前的支柱行业主要是建筑工程与工业制造,这两大行业属于劳动密集型产业,更多的需要一线建筑工人和一线生产工人。目前建筑工人的平均日薪较之前几年已经有非常大的提高,建筑工人全国平均最低日薪达到150元[1]。以东莞地区为代表的制造工业则存在常年的招工难。但是,高校目前培养的专科生从事这两大行业的意愿都相对较低,一方面的原因现在低技术含量的制造工业对年轻人缺乏吸引力,另外一方面,相对老一辈人能吃苦的精神来说现在的年轻人也不愿意从事劳动强度较高的建筑施工工作。
这就出现了中国式的就业矛盾,过高的期望值让相当比例的大学生找不到工作,而高速发展的产业却又招不到合适的人。
一、大学生就业的主力行业
从表一中不难看出,工业既需要高素质的技术性人才,也需要低素质的劳动力,而目前理科和工科的本专科学生加起来一共才137万,工业2012年新增就业人口435万。上述数据虽然不能直接证明理工科的学生供不应求,但是它说明工业仍然是吸纳大学生的最主要的行业之一。除开比较特殊的工业,目前金融行业、房地产行业、信息服务业、教育业、卫生业、文化娱乐业、政府及公共组织这几大白领行业是最具吸引力吸纳大学生求职的主力行业。
具体分析,目前多数“白领”行业人才供大于求,金融业、教育业、政府及公共组织、文化娱乐业、信息服务业等等都出现了供给严重过剩的状态。最为严重的是信息服务业、文化娱乐业、政府及公共组织。分析到具体的专业,计算机、英语、行政管理专业属于大学生就业难的重灾区。上述三大行业供求不平衡达218万人,这些专业的学生只能选择更低期望值的就业对象。这里不得不说到中国的文科大学生严重过剩的问题,法学、文学、教育学、经济学、管理学几大文科学科门类培养人数加起来达到433万人,占总大学生毕业总数的59.55%,这是一个令人震惊的数据,理工科学生一共仅占40.55%。按照中国的产业结构,几乎没有办法吸纳这么多的文科大学生就业,而大学教育又给予了这些文科大学生过高的期望值。
二、大学生容易就业的行业
目前人才供小于求的行业不多,从表一的数据来看,仅卫生业、房地产业人才的需求还不够。房地产业确实是吸纳大学生就业的主力行业,这与中国高房价和发达的基础建设行业密切相关,建筑土木系也确实是中国所有大学生就业环境最好的一大类专业。目前中国在建的工程量高达113万亿[2],相关的专业需求在未来十年始终会保持一个相对较高的增长空间。卫生业对人才的需求目前看来还不够,尤其是以乡镇为代表的公共医疗还有很大的发展空间,在老龄化人口越来越多的未来,中国的医疗行业还需要更多的相关人才。由于医学专业的培养难度大、时限长,扩招的难度也很大,所以医学类专业仍然具有较好的就业前景。
综上所述,大学生就业难是一个系统性问题,教育体制改革的重点必须从专业结构调整入手。值得欣喜的是,教育部目前已经着手开始探索职业教育、学术型教育两种高等教育方式,从中等教育阶段开始分流,探索人才培养的新模式、新结构是目前中国教育必须面临的改革难题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08