
大数据时代,危机公关也要变脸了_大数据培训
当代社会,舆情危机的爆发与扩散,与病毒传播的模式存在高度相似性。企业潜伏的质量问题、安全问题、经济问题、市场问题、民工讨薪问题等在一定条件下,可能随时爆发。这些问题一旦爆发,危机效应将在瞬间传递给世界,对企业的商誉和品牌造成极大伤害,严重的可能危及企业的生存。现实告诉人们,每一次重大突发事件,都伴随着海量的信息在互联网和其他媒体上传播,信息量之大和传播速度之快,都是前所未有的。这是在互联网的条件下,大数据时代危机传播的重要特征。
“大数据”给企业的危机公关带来了空前的挑战,也带来了巨大的机遇。互联网颠覆了很多传统的工作和生活方式,企业在危机预防与处置过程中,不仅要关注危机产生的因果关系,更要关注危机事件的相关关系,只要发现了突发事件各个现象的相关性,就可以寻找到危机公关的方程解。大数据为企业危机公关从战略到战术的创新提供了机会,云计算技术和互联网为收集和利用大数据提供了条件。通过收集和分析数据,建立数学模型,将危机问题归结为相应的数学问题,从中快速获得有价值信息,识别潜在的危机,监测危机爆发前的蛛丝马迹,及时发出警报,就可以给企业危机应对预留出时间和空间,帮助企业未雨绸缪,做出相应的对策,使企业在处置危机过程中具有更强的决策力、洞察发现力和流程优化能力。
“大数据”能为危机公关提供精确的数据和可靠的指导,用数学的概念、方法和理论,给危机传播以定性或定量的把握。企业需要通过与关联方的合作,来实现大数据的利用。例如在建筑企业里发生概率比较高的农民工讨薪问题,企业尝试运用危机公关太极运行模式,通过专业公司收集历年来农民工讨薪的相关数据、企业内部相关数据,农民工的工资与企业回收账款、农民工返乡时间、政府关于农民工的政策、媒体和公众对农民工工资问题的关注度等数据,把一方面或多方面的事件串联起来,形成相对完整的记录体系,以时间为轴将其系统化、完整化、精确化,制作数学模型,通过专家比对来识别危机,分析预测未来若干时间内农民工讨薪发生的概率、媒体的报道概率和舆情烈度,据此发出早期警报。企业近两年来,尝试运用数据分析,预测夏收和春节前容易发生农民工讨薪问题,这个时间段是突发事件的高峰期,企业据此提前采取措施,从而降低了农民工讨薪事件发生的概率。
质量安全事故是媒体关注的热点问题,对此可以收集历年数据和当前的相关数据做全面分析。比方说,一个工程的混凝土数据、钢筋的配比、施工的温度、基础和框架的承重、工程环境和媒体、政府以及公众的关注度等,通过量化的方法把这些内容转化为数据,制作成数学模型,来预测是否会发生质量安全事故,一旦事故发生,负面舆情的烈度。这样的预测可以帮助企业抢先一步确定危机应对策略,采取应对措施,配置相关媒体资源,对于减轻危机事件损失、维护企业品牌和形象都十分有益。
近年来,企业探讨大数据应用预测危机传播有了一定成果。每逢敏感时间节点,企业依据数据做出预测,将预测结果确定在一个有效范围内,发出早期的警报,收到了较好的预防效果。大数据分析预测危机爆发的可能性和危机传播的烈度、趋势和走向,根据多年来的数据累积和分析,准确率可以达到70%以上,这就为企业的危机解决方案提供了决策的依据。实战中,大数据提高了危机防范和应对能力,使新闻危机发生的概率下降28%,危机传播的概率下降42%。
危机公关是一个复杂的大系统,大数据时代危机公关要有新思维。探索以大数据为基础的解决方案,用数据为危机公关服务,是提高危机公关有效性和高效率的重要创新手段。中国建筑工会主席刘杰在《危机公关道与术》序言里说“有危机防御能力的组织将赢得未来发展的优势”。有危机防御能力的组织将是那些能够驾驭所拥有数据的企业。只有改变以往危机公关思维,才能适应这个时代的变化
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23