
大数据时代,危机公关也要变脸了_大数据培训
当代社会,舆情危机的爆发与扩散,与病毒传播的模式存在高度相似性。企业潜伏的质量问题、安全问题、经济问题、市场问题、民工讨薪问题等在一定条件下,可能随时爆发。这些问题一旦爆发,危机效应将在瞬间传递给世界,对企业的商誉和品牌造成极大伤害,严重的可能危及企业的生存。现实告诉人们,每一次重大突发事件,都伴随着海量的信息在互联网和其他媒体上传播,信息量之大和传播速度之快,都是前所未有的。这是在互联网的条件下,大数据时代危机传播的重要特征。
“大数据”给企业的危机公关带来了空前的挑战,也带来了巨大的机遇。互联网颠覆了很多传统的工作和生活方式,企业在危机预防与处置过程中,不仅要关注危机产生的因果关系,更要关注危机事件的相关关系,只要发现了突发事件各个现象的相关性,就可以寻找到危机公关的方程解。大数据为企业危机公关从战略到战术的创新提供了机会,云计算技术和互联网为收集和利用大数据提供了条件。通过收集和分析数据,建立数学模型,将危机问题归结为相应的数学问题,从中快速获得有价值信息,识别潜在的危机,监测危机爆发前的蛛丝马迹,及时发出警报,就可以给企业危机应对预留出时间和空间,帮助企业未雨绸缪,做出相应的对策,使企业在处置危机过程中具有更强的决策力、洞察发现力和流程优化能力。
“大数据”能为危机公关提供精确的数据和可靠的指导,用数学的概念、方法和理论,给危机传播以定性或定量的把握。企业需要通过与关联方的合作,来实现大数据的利用。例如在建筑企业里发生概率比较高的农民工讨薪问题,企业尝试运用危机公关太极运行模式,通过专业公司收集历年来农民工讨薪的相关数据、企业内部相关数据,农民工的工资与企业回收账款、农民工返乡时间、政府关于农民工的政策、媒体和公众对农民工工资问题的关注度等数据,把一方面或多方面的事件串联起来,形成相对完整的记录体系,以时间为轴将其系统化、完整化、精确化,制作数学模型,通过专家比对来识别危机,分析预测未来若干时间内农民工讨薪发生的概率、媒体的报道概率和舆情烈度,据此发出早期警报。企业近两年来,尝试运用数据分析,预测夏收和春节前容易发生农民工讨薪问题,这个时间段是突发事件的高峰期,企业据此提前采取措施,从而降低了农民工讨薪事件发生的概率。
质量安全事故是媒体关注的热点问题,对此可以收集历年数据和当前的相关数据做全面分析。比方说,一个工程的混凝土数据、钢筋的配比、施工的温度、基础和框架的承重、工程环境和媒体、政府以及公众的关注度等,通过量化的方法把这些内容转化为数据,制作成数学模型,来预测是否会发生质量安全事故,一旦事故发生,负面舆情的烈度。这样的预测可以帮助企业抢先一步确定危机应对策略,采取应对措施,配置相关媒体资源,对于减轻危机事件损失、维护企业品牌和形象都十分有益。
近年来,企业探讨大数据应用预测危机传播有了一定成果。每逢敏感时间节点,企业依据数据做出预测,将预测结果确定在一个有效范围内,发出早期的警报,收到了较好的预防效果。大数据分析预测危机爆发的可能性和危机传播的烈度、趋势和走向,根据多年来的数据累积和分析,准确率可以达到70%以上,这就为企业的危机解决方案提供了决策的依据。实战中,大数据提高了危机防范和应对能力,使新闻危机发生的概率下降28%,危机传播的概率下降42%。
危机公关是一个复杂的大系统,大数据时代危机公关要有新思维。探索以大数据为基础的解决方案,用数据为危机公关服务,是提高危机公关有效性和高效率的重要创新手段。中国建筑工会主席刘杰在《危机公关道与术》序言里说“有危机防御能力的组织将赢得未来发展的优势”。有危机防御能力的组织将是那些能够驾驭所拥有数据的企业。只有改变以往危机公关思维,才能适应这个时代的变化
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07