
大数据告诉你,经典电影哪家强_数据分析师
听说过这句话吗:一千个影迷心中,就有一千个哈利波特。
一部电影好不好看,这绝对是能让两个老朋友打起来的话题。这位只看特效闪瞎眼的科幻片,那位独爱温情脉脉的文艺片,这位推崇意象塞满屏幕的魔幻现实风格,那位偏好严谨精妙的悬疑推理剧情。青菜萝卜,各有所好,哪部电影更经典,一时间,谁也说不服谁。
打一架决定谁说的对?且慢动手,咱们来听互联网电影大数据的……什么?电影大数据是个啥?
这就要从互联网电影数据库(Internet Movie Database, 简称IMDb)说起了。这个数据库,是亚马逊网络电子商务公司旗下的一个网站,在这里,你能找到几乎最详细的电影资料,从演员表、票房收入到剧情梗概、幕后花絮,可谓是应有尽有。
其中最要紧的一项,就是由网友们提交的电影之间的“联系”。这些联系包括“参考”、“恶搞”、“放映”、“续作”等等。也可以说,这种联系,是新拍的电影,对老电影的“引用”,俗称“向经典致敬”。
这样致敬的例子太多啦,最近很火的电影《一步之遥》里,姜文坐在百叶窗前,黑西装的领子上别着一枚红玫瑰,怀里还抱着一只兔子。眼尖的观众立刻就看出来啦,这不是经典美国电影《教父》里的场景吗,一样的布景和镜头景别,一样的服装和光线,甚至还有一样位置的玫瑰花。
哦,有一点儿不同,马龙·白兰度怀里抱着的是只猫。
甭管抱的是什么,这就是向经典致敬了。《教父》被致敬的次数,已经排到了电影史上的第八位。这部1972年的名作,自入选以来,已经被长间隔引用了162次。排名第一的影片《绿野仙踪》于1939年上映,其长间隔引用数据是565次,把第二名《星球大战》系列甩出了200多次,后者的数据是297次。
上文说到的长间隔引用次数,正是芝加哥西北大学复杂系统研究院联席主任路易斯·阿马拉尔教授所认为的评价电影重要与否的最佳指标。
路易斯·阿马拉尔教授率领的科学团队,已经为电影衡量标准这事儿奋斗了很久。在他们看来,票房、专家点评、获奖与否、观众口碑,统统做不得准——票房可以靠宣传和排期,专家和观众的看法都有主观喜好因素,甚至会“带有偏见”,评奖的猫腻就更多了——除了冰冷又可爱的大数据,还有什么标准能更显得科学呢。
为了分析电影的影响力,研究团队选择借助互联网电影数据库的引用功能:一个是计算电影被搜索引擎超链接的次数,另一个是计算电影在上映后,25年以上的时间跨度中,被其他电影引用的次数,也就是长间隔引用次数。
25年这个阈值,是研究团队通过观察经验分布和零模型对比发现的。低于这个年限的电影被引用,还很有可能是受潮流影响,只有真正的好片儿,才受得住时间的考验。
事实上,在预测电影的重要性方面,数据科学也的确要比影评人更客观。阿马拉尔教授带着他的“长间隔引用次数”,一出手就能镇住一片。在海量计算之后,研究团队给出的“最具影响力”的电影榜单里,上榜影片入选美国国家影片登记表的,比其他各种专家的影评意见都靠谱。看来,大数据不但能预测商业行为,还能帮你列一份必看电影名单,只不过等待的时间有点久,要花足足25年。
不过,人到底是主观的动物。我猜想,对那些骨灰级影迷而言,任你大数据再科学、再准确,真到了讨论电影好不好看的时候,两个老朋友仍然能打起来。比如我,就是喜欢《星球大战》甚于《绿野仙踪》,无论大数据怎么显示,对我来说,排名第二的这部片子,还是比第一名的重要。
还是那句话,一千个影迷心中,永远有一千个哈利波特!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23