
大数据应用才是P2P平台的核心_数据分析师
谈到中国P2P网贷平台发展面临的障碍时,很多人言必称个人信用体系缺失。理由是,这使得平台难以进行线上信贷审核。他们认为,P2P的未来取决于央行个人征信系统的建立,且个人征信主要是信用记录的追溯性搜集,核心在于建立个人“信用档案”、形成个人信用报告。诚然,在美国著名P2P平台的发展历程中,完备的个人信用体系的确功不可没,但这并不是其壮大的唯一因素,个人信用报告也不应是P2P征信的全部。个人信用体系只是个人征信体系的一环,基于大数据前瞻性应用的平台征信,才是P2P平台发展的核心竞争力。
如果P2P平台的数据来源仅靠个人信用体系,就无法打造自身的核心竞争力,单纯依靠个人信用报告的信贷机构,也根本无需发展成网络借贷机构。
实际上,基于大数据的前瞻性应用,网络借贷平台有望实现两大突破,这也构成其相对传统商业银行真正的核心竞争力。
其一,网贷机构通过挖掘及时、准确、海量的网络数据,能更真实地反映客户当前及未来的还款能力和还款意愿,提高信贷服务的覆盖面。完全基于个人征信系统进行授信的个人信用报告,只能反映借款人的历史信用记录,无法反映当前及未来信用的真实情况;另外,个人信用报告只能反映拥有个人信用记录客户的信用信息,可实际上很多人在个人信用体系中没有任何信用记录,这些“漏网”的客户就无法获得融资。
其二,银行的审核严格程度与贷款便捷性往往存在负向关系。商业银行在服务借款人时,要经过较长时间进行严格的信贷审核后,才能对客户的贷款申请进行答复。而过于快捷的信贷审核流程,又可能意味着银行对风险把控不严。但网络贷款机构可通过分析客户的网络搜索记录,更真实有效率地预测借款人的借款需求,有望在强化风险把控能力的同时,提高信贷的便捷性。
互联网时代,贷款机构的信贷决策必然将越来越依赖于高频的互联网数据。在具体应用时,一定要保证有足够多的数据,数据的来源也应多样化,可来源于公检法机关、商业银行,也可来源于互联网渠道。在此基础上,更重要的是对数据进行细致精准的分析。目前,很多P2P平台缺乏的不是数据,而是对数据的恰当处理,这就需要构建合适的计量模型对数据进行有效的量化分析。
更精准的数据分析模型能极大提高平台的竞争力。具体而言,模型有效性的提高,能提高平台甄别借款人的效率,降低投资者面临的信贷风险,这样投资者对贷款收益的要求就会降低,平台也能降低放贷利率,从而推动平台规模的快速扩张。
如果说目前中国金融体系还处于“有钱的人才能借到钱,没钱的人永远借不到”的金融1.0时代,那美国个人信用体系的健全使其早已进入了“有信用但没钱的人也能借到钱”的金融2.0时代。而互联网金融企业,正引领美国进入更具前瞻性的金融3.0时代,这一时代的贷款机构能更加有效地将资金提供给具有真实还款能力以及还款意愿的个人。
换言之,个人信用体系的建立能助力中国金融体系从金融1.0时代进入金融2.0时代,大数据的前瞻性应用则可推进中国金融体系弯道超车,迈进金融3.0时代。由此看来,我国有必要开放P2P平台自身个人征信牌照的申请,以充分利用平台大数据应用的正反馈机制,提升信贷服务的覆盖面与效率。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08