京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据服务业的结构与价值_数据分析师
进入2014年,大数据正从红遍媒体的概念炒作逐渐落地为生财的产业。如雨后春笋冒出的大数据服务商,在中国市场上展开了激烈角逐。从“中国大数据服务商综合服务水平TOP100排行榜”(以下简称榜单)中,已经可以隐约看出中国“大数据云图”的雏形。
中美“大数据云图”结构比较
相比美国同类榜单,高居首位的10Gen仅列第43,而大数据股明星Tableau仅列第45,而Marketo干脆没上榜。这让我们注意到榜单标的服务范围是中国,而非美国。
我去年到美国与《大数据云图》的作者芬雷布交流时,已经注意到,中美大数据产业布局存在巨大差异。在一年时间里,中国大数据的产业版块正发生巨大变化;对比大数据云图2.0版(2013版)与3.0版(2014版),美国的产业也在急剧变动。
美国大数据云图3.0版将产业版块重新划分为六块,分别为数据源、开源、跨平台基础设施/分析、基础设施、分析、应用。其中“分析”领域的热点是数据可视化、非结构化数据;“基础设施”领域的热点是NoSQL和NewSQL数据库;“应用”领域的热点是广告优化和营销。
比较中美“大数据云图”,可以看出以下特点:第一,在“数据源”领域,中美各有特色,中国互联网平台数据源和行业数据源建设已经起步,但本地数据(语用数据、情境数据)仍有待加强。第二,“开源”、“跨平台基础设施/分析”和“基础设施”三个领域,美国处于垄断地位。榜单中位列前15的均是美国厂商,且多跨“跨平台基础设施/分析”和“基础设施”两个领域。中国一些厂商认为美国相关技术专业性太强,不利于普及,更倾向短平快技术应用。但一些企业坚持在这些重要领域耕耘,如商业智能软件(用友软件,久其软件);数据中心建设与维护(天玑科技、银信科技、荣之联等);第三,中国厂商绝大多数集中于“应用”与“分析”领域。前者如广告优化与营销(阿里巴巴、腾讯等),金融、汽车、政府、健康、教育、安全等行业应用;后者如数据处理、分析环节、综合处理(拓尔思、美亚柏科等),语音识别(科大讯飞),识频识别(海康威视、大华股份、华平股份、中威电子、国腾电子)。在应用领域,中美热点相似度较高,都包括广告优化、营销、金融、产业、政府、健康、教育、安全等。
如果以上是对榜单的结构分类分析,接下来要按价值分类进行分析。
对中国“大数据云图”的价值分析
对大数据进行价值分类,可分为“风动”(客体价值)、“幡动”(主客体价值)、“心动”(主体价值)三类。这是六祖坛经的价值分类法。
1、风动类的大数据,是工程师眼中的大数据,看到是技术。典型代表是3V、4V说。林林总总的这方面定义,可以用一个词概括,这就是“复杂”。大数据本质上是复杂性数据。
从这个方向观察,中美企业差距较大。榜上前10名基本都是属于“跨平台基础设施/分析”的美国厂家。其中HP今年刚被列入美国“大数据云图”(3.0版),如今赫然列在第4。而以硬件加强大数据,7.4亿投Cloudera异军突起,HADOOP的CDH平台占中国一半的英特尔列在第2,却至今不在美国榜单。显然这是美国榜单出了问题,而中国这个榜单跟进比较及时超前。
未来发展,中国企业需要回到图灵初衷,找到复杂性数据的感觉(而不光是象谷歌那样迷信数学算法),沿跨“科技-人文”二元的“数据科学”方向发展。华为与伦敦帝国理工学院共建数据科学创新实验室,是积极迹象。
工程师扑向复杂性数据,就象小孩子扑向玩具一样,只关心是与不是这种事实评价,并不关心好与坏这种价值评价。商务或政务的代理人关心的是技术应用于人之后产生的价值,因此要把客体与主体联接起来。
2、幡动类的大数据,是业务代理人眼中的大数据,看到的是工具和能力。以美国政府的定义为代表。林林总总的这方面定义,可以用一个词概括,这就是“洞察”。
数据越复杂,成本越高,是迟钝(又称工业病),为不好;数据越复杂,成本越低,叫灵活(SMART),是好。洞察,就是指“穿透信息迷雾”。这是当数据进入泽字节(ZB)时代后,避免信息垃圾填埋,反而能保持“清清楚楚明明白白真真切切”的能力。
相比基础技术,中国企业借助市场优势,在应用方面具有优势。因此可以看到大批国内企业在榜。其中可分为三类,一类是ICT服务商,如华为、浪潮、用友、东软、金蝶等;一类是国内上市公司,如拓尔思、东方国信、天玑科技等“大数据概念股”;一类是互联网企业,如阿里巴巴、百度、腾讯等。
ICT服务商共同的特点,是从软硬件技术服务向商业数据服务方向转。例如,华为发布企业级大数据分析平台FusionInsight ,帮助企业洞察新商机。 用友通过“用友NC” 正在探索基于云平台的系列方案与应用服务,包括提供企业营销管理、供应链、制造生产、项目管理等服务。
大数据概念股上市公司的共同特点,是从解决方案提供商在向行业云数据服务方向转型。例如,东软集团在传统IT 服务基础上,向车载电子和医疗服务等新兴领域深化云数据服务。拓尔思开始做跨行业应用,和天行网安协作,提供基于数据分析的安全服务;天玑科技正从服务传统IT架构,转变为服务互联网架构,从纯粹的服务供应商,演变为产品和服务的提供商。此外,一批有数据中心业务基础的厂家也在向大数据转,如荣之联、中科金财等。
互联网企业,如百度、腾讯、阿里等拥有数据的平台型企业,纷纷针对自身的平台用户提供数据分析业务,并且向金融、环保、交通、医疗等行业的数据分析应用逐渐渗透。例如阿里巴巴开始做金融行业的数据分析应用。
透过目前的榜单,我们可以看出一个目前尚不明朗的潜在趋势。这就是亚马逊模式的兴起。亚马逊的重要性,我认为不能仅看到它排名第7这个表象而有所忽视。事实上亚马逊的大数据收入,是排位在前的所有厂商之和还要多许多。据Synergy报告显示,2013年第三季度,亚马逊获取了美国云计算市场总收入25亿中的多数份额,本身收入提升55%。Synergy估计,亚马逊第四季度云计算收入将达7亿美元,比微软、IBM、谷歌、Salesforce.com的总和还高出15%。这不是偶然的。限于篇幅不展开谈。这意味着中国企业中近亚马逊模式的,如阿里巴巴、用友、东软、金蝶等,还有更大潜力空间。
穿透今天这个排名来看明天,我们需要高度重视这样一个市场信号:大数据应用的主战场,可能并不象人们一般以为的那样,是在信息技术服务领域,而可能转向商务服务领域。这是ICT服务商、大数据概念股和互联网公司未来共同的转型升级方向。此外,大数据的绝对优等生FACEBOOK在中美大数据云图中都不见踪影,但类似模式却代表前沿方向。
3、心动类的大数据,是委托人(领导者与最终消费者)眼中的大数据,看到的是目的和意义。以IBM的智慧计算为代表。林林总总的这方面定义,可以用一个词概括,这就是“意义”。
有能力,却不明确要解决什么问题,大数据就是屠龙之术。大数据工作的结果,如果是把符合意义的数据留下来,叫智慧;如果是把不符合意义的数据留下来,叫愚蠢。大数据的主体价值在于把人的目的和意义的保障系统加以专业化(准确说是把手段与目的校准,保障做事不忘宗旨这件事专业化)。做事情的意义,无非来自两个方面,或者是老板指示目标;或者是目标本身,即最终消费者的满意与不满意。
按这个标准衡量,大数据发展到今天的水平,还很少有哪家达标。大数据要真想让付钱的人心动,还需要把大数据发展到更高阶段。好的迹象是,位列第1的IBM,至少在大数据纲领上,已明确了“智慧”这个主题词。说明他从100家中脱颖而出,第一个想明白了,通过风动、幡动,到底要让人心动,还是心不动。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27