京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代,用「大、快、杂、疑」四字箴言带你认识大数据
你可能有注意到,「大数据(Big Data)」在我们的生活裡已经掀起滔天巨浪,继云端运算(Cloud Computing)之后,俨然成为学术界跟科技业中最热门的潮字(Buzz Word),似乎每家公司都在进行有关的研究,三句不离大数据。究竟大数据是怎么出现,又代表着什么意思呢?
大数据(Big Data),巨量资料爆炸的时代
大数据(Big Data)—— 或称巨量资料,顾名思义,是指大量的资讯,当资料量庞大到资料库系统无法在合理时间内进行储存、运算、处理,分析成能解读的资讯时,就称为大数据。
“Big data is data that exceeds the processing capacity of conventional database systems.”
这些巨量资料中有着珍贵的讯息,像是关联性(Unknown Correlation)、未显露的模式(Hidden Patterns)、市场趋势(Market Trend),可能埋藏着前所未有的知识跟应用等着被我们挖掘发现;但由于资料量太庞大,流动速度太快,现今科技无法处理分析,促使我们不断研发出新一代的资料储存设备及科技,希望从大数据中萃取出那些有价值的资讯。
「Big Data」这个词最早由 IBM 提出,2010 年才真正开始受到注目,并成为专业用语登上维基百科1,算是「大数据」的正式问世。而在 2012 年时,《纽约时报》的专栏文章「The Age of Big Data2」更是宣告了「大数据时代」的来临。值得一提的是,大数据并不是什么新兴的概念,事实上,欧洲粒子物理研究中心 (CERN)的科学家已经面对巨量资料的问题好几十年了,处理着每秒上看 PB (Peta Bytes,註:PB = 1,024 TB)的资料量3。
TED-Ed 的影片讲解 Big Data 概念,简单又好懂:
一般来说,大数据涵盖的範围很广,定义也各家歧异,2012 年 Gartner 公司的分析师 Douglas Laney 给予大数据一个全新定义4:「大数据是大量、高速、及/或类型多变的资讯资产,它需要全新的处理方式,去促成更强的决策能力、洞察力与最佳化处理。」
于是大部份机构跟公司都将大数据的特性归类为「3Vs」或「4Vs」–– 资料量 Volume、资料传输速度 Velocity、资料类型(Variety),以及后来提出的第四个 V —— 真实性 Veracity。以下整理了 4Vs 简单的定义跟解释,可以从这四点切入认识大数据。
Volume 资料量
以前人们「手动」在表格中记录、累积出数据;现在数据是由机器、网路、人与人之间的社群互动来生成。你现在正在点击的滑鼠、来电、简讯、网路搜寻、线上交易... 都正在生成累积成庞大的数据,因此资料量很容易就能达到数 TB(Tera Bytes,兆位元组),甚至上看 PB(Peta Bytes,千兆位元组)或 EB(Exabytes,百万兆位元组)的等级。
Velocity 资料输入输出速度
资料的传输流动(data streaming)是连续且快速的,随着越来越多的机器、网路使用者,社群网站、搜寻结果每秒都在成长,每天都在输出更多的内容。公司跟机构要处理庞大的资讯大潮向他们袭来,而回应、反应这些资料的速度也成为他们最大的挑战,许多资料要能即时得到结果才能发挥最大的价值,因此也有人会将 Velocity 认为是「时效性」。
Variety 资料类型
大数据的来源种类包罗万象,十分多样化,如果一定要把资料分类的话,最简单的方法是分两类,结构化与非结构化。早期的非结构化资料主要是文字,随着网路的发展,又扩展到电子邮件、网页、社交媒体、视讯,音乐、图片等等,这些非结构化的资料造成储存(storage)、探勘(mining)、分析(analyzing)上的困难。
Veracity 真实性
这个词由在 Express Scripts 担任首席数据官(Chief Data Officer, CDO)的 Inderpal Bhandar 在波士顿大数据创新高峰会(Big Data Innovation Summit)的演讲中提出,认为大数据分析中应该加入这点做考虑,分析并过滤资料有偏差、伪造、异常的部分,防止这些「dirty data」损害到资料系统的完整跟正确性,进而影响决策。
大数据特性,谨记四字箴言:「大、快、杂、疑」
大数据资料量庞「大」(Volume)、变化飞「快」(Velocity),种类繁「杂」(Variety),以及真伪存「疑」(Veracity)。尤其在这资讯大爆炸时代,这些资料变得又多、又快、又杂、又真伪难分。
当然在「大数据」一词像病毒一样,侵入我们生活中的各个层面,也有越来越多人提出更多的「V」来解释大数据,像是 Volatility、Validity、Value、Victory 等,这些分歧的意见在这就不多详述,只要知道有这些说法、以后听到别人说到「7Vs」时不要觉得惊讶就行啦!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23