
键盘上的大数据_数据分析师
信息时代正面临着潜在的负载倾向。这种倾向反映到前沿科技上就是业界所谓的“大数据”——即指数据的总量过大,以至于传统的数据库难以将其消化,甚至无法负荷。而后,“大数据”一词又衍生出了指一类需使用大量数据运算的科技之意。
因此无论何时,只要我们关注的某类数据中包含着数十 亿(甚至数万亿)条来自网络及其他途径的记录,我们就是在谈论“大数据”。 然而很多时候,我们都忽略了在每日与科技的接触中,比如使用移动设备上的自动纠错功能、文字处理软件和电邮客户端时,会与“大数据”一词产生多大的关联。
自动纠错功能有时错的令人无语,以至于许多网站致力于贴图展示那些搞笑(且经常黄暴)的“修改结果”。尽管如此,这种在移动设备上的自动改正错误拼写甚至预测下一个词语的功能依然是超乎想象的好用,毕竟更多时候它替你避免了许多由手指输入而可能造成的尴尬局面。
不过有时想想也会惊出一身鸡皮疙瘩。 智能机可以根据你键入的任意字母顺序,列出可能产生的所有词语结果。再考虑到外语编程的可行性,以及现在多数智能手机的滑动输入功能,可以说由此产生的几乎无限多的词语组合确确实实是“大数据”。
字词推荐和自动纠错功能基于一种智能手机自带的算法。基本来说,它可以将你的键入与内置词典进行比对,并找出与之不同的拼写。而它的的内置词典往往涵盖多种语言。举例来说,每次我键入外语字母时,手机都会提供相应词典的联想与纠错功能。
当键入的内容与字典相符时,手机会显示可能与其相配 的字词。如果建议的词语正确,这项功能会大大缩短打字时间,提高沟通效率。如果无可用结果,手机程序会继续提供更多字词选择,其中有的文法正确,有些还算 合理,有些甚至你都没想过,剩下的基本就是网上那些“手机输入法搞笑图片”的素材了。
怎样的键入会有怎样的推荐词,这是程序员要面对的诸多挑战之一,这其中又包括如下两点:
1、 制作出全面的词库——该词库的功能不能因时代发展而打折,反而应与时俱进,具有高实用度,比如要收录容易出现在短信中的网络流行语等。
2、 敲定出没有明显缺陷的语言模型——该模型应可以检验用户输入的字词并对可能的错误给出合理建议。
这也就是说,如果键入了“taxos”,那么是“taxis”呢还是“tacos”呢?你的输 入法键盘会同时提供这两个推荐。但是如果你想输入的是“taxes”,那就需要输入法已知上下文意,如“there’s nothing sure but death and…”,才能正确给出taxes。如果并无前后文提示,只是单纯错输了taxos,除非使用极成熟的输入法,一般说来只能得到“taxis”、 “tacos”,或者“taxos”的推荐。当然,绝大多数使用自动纠错和字词联想功能的人还是会被它的精确率惊艳到的。
Google搜索引擎的拼写检查程序会记录学习用户偏好,并据此对搜索结果加以修正。然而绝大多数的手机键盘并非如此智能,部分原因是收集用户的打字习惯并生成数据库很可能会侵犯个人隐私。
用于自动纠错的词库一般从不受专利限制的文集中获得词汇。程序员已经设计出了一系列的算法,用于识别常用句法,某词的主要用法和重复,拼写,以及可能的字母串位,当然还有由于键盘布局而时常发生的字母错误。
即使如此,手机也会学习你对于自动纠错后的字词的修正方式。这更常见于输入如商业术语等专有名词和新生词语时。
没有大数据对海量字词组合的管理 ,智能输入法也就无所谓智能了。然而,大数据还能让键盘变得比现有功能更具智慧。随着技术日趋成熟,手机可以存储更多信息,手机词库也将变得愈大、愈精。
未来,输入法开发人员将会使用大数据和机器学习来完善所有依赖键盘和基于文本的功能,而键盘的使用感也将会大大提升。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04