京公网安备 11010802034615号
经营许可证编号:京B2-20210330
键盘上的大数据_数据分析师
信息时代正面临着潜在的负载倾向。这种倾向反映到前沿科技上就是业界所谓的“大数据”——即指数据的总量过大,以至于传统的数据库难以将其消化,甚至无法负荷。而后,“大数据”一词又衍生出了指一类需使用大量数据运算的科技之意。
因此无论何时,只要我们关注的某类数据中包含着数十 亿(甚至数万亿)条来自网络及其他途径的记录,我们就是在谈论“大数据”。 然而很多时候,我们都忽略了在每日与科技的接触中,比如使用移动设备上的自动纠错功能、文字处理软件和电邮客户端时,会与“大数据”一词产生多大的关联。
自动纠错功能有时错的令人无语,以至于许多网站致力于贴图展示那些搞笑(且经常黄暴)的“修改结果”。尽管如此,这种在移动设备上的自动改正错误拼写甚至预测下一个词语的功能依然是超乎想象的好用,毕竟更多时候它替你避免了许多由手指输入而可能造成的尴尬局面。
不过有时想想也会惊出一身鸡皮疙瘩。 智能机可以根据你键入的任意字母顺序,列出可能产生的所有词语结果。再考虑到外语编程的可行性,以及现在多数智能手机的滑动输入功能,可以说由此产生的几乎无限多的词语组合确确实实是“大数据”。
字词推荐和自动纠错功能基于一种智能手机自带的算法。基本来说,它可以将你的键入与内置词典进行比对,并找出与之不同的拼写。而它的的内置词典往往涵盖多种语言。举例来说,每次我键入外语字母时,手机都会提供相应词典的联想与纠错功能。
当键入的内容与字典相符时,手机会显示可能与其相配 的字词。如果建议的词语正确,这项功能会大大缩短打字时间,提高沟通效率。如果无可用结果,手机程序会继续提供更多字词选择,其中有的文法正确,有些还算 合理,有些甚至你都没想过,剩下的基本就是网上那些“手机输入法搞笑图片”的素材了。
怎样的键入会有怎样的推荐词,这是程序员要面对的诸多挑战之一,这其中又包括如下两点:
1、 制作出全面的词库——该词库的功能不能因时代发展而打折,反而应与时俱进,具有高实用度,比如要收录容易出现在短信中的网络流行语等。
2、 敲定出没有明显缺陷的语言模型——该模型应可以检验用户输入的字词并对可能的错误给出合理建议。
这也就是说,如果键入了“taxos”,那么是“taxis”呢还是“tacos”呢?你的输 入法键盘会同时提供这两个推荐。但是如果你想输入的是“taxes”,那就需要输入法已知上下文意,如“there’s nothing sure but death and…”,才能正确给出taxes。如果并无前后文提示,只是单纯错输了taxos,除非使用极成熟的输入法,一般说来只能得到“taxis”、 “tacos”,或者“taxos”的推荐。当然,绝大多数使用自动纠错和字词联想功能的人还是会被它的精确率惊艳到的。
Google搜索引擎的拼写检查程序会记录学习用户偏好,并据此对搜索结果加以修正。然而绝大多数的手机键盘并非如此智能,部分原因是收集用户的打字习惯并生成数据库很可能会侵犯个人隐私。
用于自动纠错的词库一般从不受专利限制的文集中获得词汇。程序员已经设计出了一系列的算法,用于识别常用句法,某词的主要用法和重复,拼写,以及可能的字母串位,当然还有由于键盘布局而时常发生的字母错误。
即使如此,手机也会学习你对于自动纠错后的字词的修正方式。这更常见于输入如商业术语等专有名词和新生词语时。
没有大数据对海量字词组合的管理 ,智能输入法也就无所谓智能了。然而,大数据还能让键盘变得比现有功能更具智慧。随着技术日趋成熟,手机可以存储更多信息,手机词库也将变得愈大、愈精。
未来,输入法开发人员将会使用大数据和机器学习来完善所有依赖键盘和基于文本的功能,而键盘的使用感也将会大大提升。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01