
很少有商界人士,乃至是高级管理人士,能够真正理解大数据是什么样的一种革命性的力量,或大数据对于各类企业来说所代表的破坏性威胁。
大数据所带来的比以往任何时候都能够对客户的生活、习惯和愿望了解更多的前景预期,无疑令人兴奋不已。然而抛却这所有的兴奋,我们不应该忘记的是,很少有商界人士,乃至是高级管理人士,能够真正理解大数据是什么样的一种革命性的力量,或大数据对于各类企业来说所代表的破坏性威胁。
当你准备对大数据所带来的所有的光鲜机遇大加利用时,别忘了,存在于大数据中的魔鬼可能会出现在以下这些被忽视的细节之中:
一、数据保全
对于正在收集和储存大量客户数据的公司来说,最显而易见的威胁,就是那种一直困扰塔吉特、家得宝和摩根大通这样的大规模安全泄露。在过去的几年里,数以百计的其他公司也都曾经历过类似的数据泄露,全都是因为侵入企业数据库的人一直以来都比试图保全企业数据库免受数据泄露的人更加机智、更加坚持。
【解决方案】
大数据时代更好的安全,意味着保证所需基础设施和人员的长期投资,以保护这种快速成为每个组织更重要的资产,即其客户数据。
二、数据泛滥
大数据不仅仅是更多的信息,而是成倍增长的来自四面八方的巨大海量信息。淹没在所有这些数据之中的可能性是真实存在的。因在无关的数据海洋中艰难跋涉而浪费很多时间、精力和资源的可能性同样也是真实存在的。未来面临的挑战将会是从数据中提取需要的数据,很多组织将不得不受到的沉痛教训是,太多无用的信息造成的信息不足或信息不匹配。
【解决方案】
尝试尽可能地使数据类型具体化,将会有益于对数据的了解。数据本身正在变得更加细化,所以对于数据的筛选也同样需要做得更加精致。缩小数据的聚焦范围。定义数据的相关参数。别忘了问自己一下这个浅显的问题:如果你可以与客户实时沟通,那他们在你的品牌和其他品牌之时做选择时,你会对他们说什么?如何说?
三、别自以为聪明
自从有了大数据,对于一些人来说,很容易就会有针对别人哪怕是最老牌的企业发起竞争性挑战的想法。大数据将展现出别人能够轻易利用的竞争格局中差距。任何人只要敢于尝试,即使不存在竞争威胁,也有可能成为潜在的竞争威胁。
【解决方案】
无论多大的组织,系统都需要像小组织或初创组织那样,时刻保持至少部分组织运行之中。更多的精力需求投入到市场调研、竞争情报、互联网侦察活动中去,因为变化迅速而持续,竞争威胁可能会从任何地方、任何时间袭来,而造成巨大的伤害。
四、数据管理
在大数据的消费者方面,公司在未来几年将会处理更多的内部生成的数据。然而在许多组织中,不同的部门像财务、工程、生产、市场、IT等之间的信息仍然是孤立的,各部门之间相互设防,造成信息无法共享。那些能够在不破坏壁垒和部门实际优势的前提下更透明地沟通的公司将更具竞争优势。
【解决方案】
数据管理对每个人来说都是一个挑战,但最大的挑战,是找到有经验且受过满足公司所需必要训练的人,尤其是在数据增长中。针对数据管理人员的高级教育和培训将会付出巨额的成本,即使现在看来是一种不必要的开销。
五、听从机器做决定
随着组织的发展,各部门之间的壁垒被打破,数据分析成为一项日益重要的业务流程,不可避免地就会有一段时间的数据显示需要做出重大改变。随着越来越多的决策来自于数据驱动的分析,对于人最艰难的事情之一,就是让机器做决定。不幸的是,决定可能是重要的,而机器可能是正确的。
【解决方案】
听从数据所告诉你的,并尝试尽可能明智地使用它。不要放弃你的直觉,而是要使用所有可用的信息做出发自内心的决定。否则,你的内心可能会背叛你。
六、处理即时不满
与客户保持亲密人际关系的缺点之一,就是如何和那些气愤和不满意的客户保持亲密的人际关系。如今的时代,每个客户都有一大把的手段可以让全世界都知道他们有多不满意,而且他们乐于使用这种时代的力量。一个愤怒的客户可以给组织带来莫大的伤害。
【解决方案】
响应能力是客户服务一如既往的关键之所在,对于每一个心怀不满的客户,只要有正确的响应,都可以将其转换成品牌的拥护者。幸运的是,允许客户产生不满的同等机制,也或多或少的可以允许公司用来解决即时问题。响应越及时,对每个人都越有好处。
|
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-19偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12