
百度竞价数据分析中几个疑问思路诠释 _数据分析师
谈到数据分析,这问题几乎天天都在讨论和咨询,因为数据分析对于一个合格的竞价员来讲几乎成为必需品和熟知的技巧,数据分析可以看出竞价中很多的问题,包括数据关键词来源、高点击、高展现、高消费、高转化等如何优化与开展。 我就这几个问题谈谈一下几点思路: 第一、对于数据中关键词分析 1、做好关键词跟踪统计,因为这是可以更加精准的追踪到关键词数据,可以根据该数据拓展关键词或研究下一步推广计划策略等,一般在网站后台都有设置端口,这就不多讲了。 2、URL路径对应关键词,可以统计到转化。 第二、对于展现点击疑问分析 1、高展现高点击情况分析,这种怎么说明你的创意比较优秀,展现位置稳定,展现机会比较多,网民所看到的的机会也就更多,故点击就会很高,在这种情况下,应该多注意账户的页面与客服,因为这回影响到转化的效果,页面的美观与否直接影响到用户的下一步咨询等; 2、高展现低点击情况分析,这种情况是在展现机会很好,但是点击却寥寥无几,说明该账户的创意上面不够下工夫,创意的撰写不够吸引,应该增加数字符号吸引眼球的文字吸引点击,在排名稳定的情况下进行; 3、低展现高点击,这种情况下说明账户的点击率会比较高,创意比较优秀,而关键词以及账户单元估计会比较少,应该增加关键词和优化创意提高展现稳定点击。 第三、对于展现消费疑问分析 1、高展现高消费情况,这可能说明账户的出价等会很高,太过于关注关键词排位问题,应多分析消费的去向,针对不同情况调整与优化,对于高消费的关键词在排位稳定情况下可以略降低出价; 2、高展现低消费情况分析,这说明优化上面非常到位,这种情况下不断优化和稳定并关注消费与展现的数据波动; 3、低展现高消费情况分析,这是很多竞价员都在讨论或讨论最多的问题,因为这个问题真是有点难度的,影响因素很多,账户以及人员,在低展现而消费高情况应该这样来,降低消费的同时不断调整账户以及增加关键词、优化质量度稳定质量度。 第四、对于消费与转化疑问分析 1、高消费与高咨询转化情况分析,这应该多研究关键词的转化以及高咨询的重点拿出来研究,对于高只咨询高转化的应该多拓展这方面关键词来拉低消费,从而达到优化账户的目的; 2、高消费低转化情况分析,这就是大伙讨论的有点击有消费却没有咨询的问题,这种情况下应该提高创意吸引点击的情况下,不断优化页面以及提高咨询人员素质和专业知识能力,以便更好的回答用户疑问提高转化率,另一方面针对高消费的部分词语进行调整优化; 3、低消费低转化情况分析,这说明账户优化推广效果很差,应该优化账户的同时提高出价稳定排名,优化着陆页和url等,还有控制时段以及消费。 数据分析是可以非常直观的帮助我们分析竞价中存在的弊端和弱点,养成善于分析竞价数据的习惯,是我们提升用户体验度一个很重要的思路,
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23