京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代:就是一个数据为王的时代
近年大数据(Big Data)成为一项相当热门的名词,几乎所有跟网络有关系的企业,包括政府都在谈大数据,但是台湾目前却很少看到真正有运用大数据的企业,真正利用大数据创造出价值。
大数据价值来自数据
台湾大数据科学家蒋居裕分析指出,经过3年的分析与观察,发现大数据的基本核心价值,最主要还是数据本身,这也是大数据中最有价值的地方,代表大数据时代就是一个「数据为王」的时代。
所有的大数据分析工具与相关产品,没有数据是动不起来的,有人曾用21世纪的石油比喻当前许多数据,蒋居裕指出,这个论点中有一个错误,因为石油是用了就没有了,但是数据只要产生了,就能无限次的使用,且越用价值越高。
其次,要创造大数据的价值,行业市场以及终端对终端(End to End)方案也相当重要,蒋居裕说,并非所有的行业都有利用大数据的需求,但是像电信、零售或是电子商务厂商这样的行业,对于大数据的运用就相当重要。
蒋居裕说,终端对终端方案之所以重要,是因为客户目前往往有钱但没有人,所以这些企业必须仰赖服务供应商去分析数据,完成数据的运用,因此服务提供商不仅要提供解决方案,更需要提供服务。
整体来说,蒋居裕以大自然比喻整个资讯科技(IT)市场,在大数据的时代,数据就像阳光、空气、水一样,是资讯与通信科技(ICT)与所有科学的基础,因此数据本身并不是一个产业,但却是许多产业的价值基础。
数据产品应运而生
当数据产生,有了大数据的价值基础之后,要创造出价值,就衍生出许多数据产品。蒋居裕指出,数据产品就是将一种或数种数据经过分析之后,以软体系统、报表、视觉化图表、决策辅助、云端服务等形式交付给客户。
以社群网站脸书(Facebook)来说,取得了使用者的数据,提供关键字广告或是提供开放的应用程式介面(API),让开发者可以使用这些数据,这都是属于数据产品的一种。
而要发展数据产品,蒋居裕说,必须有团队、数据、区域、工法与心法五大要素,其中最重要的就是团队,因为数据分析毕竟还是需要人,人才看得懂数据,有人有数据之后,对需要的数据区域利用工具、技能等进行分析(工法)。
人才能创造数据价值
除了如何去分析数据的工法之外,蒋居裕强调,对于数据分析运用的心法也相当重要,这包括了对数据运用的信念与知识等等。也因为如此,要创造大数据的价值,不单单是IT人员或是部门的问题,是企业管理的问题。
据国外分析发现,大数据的数据专案超过半数(55%)都会失败,但是一般IT的专案计画的失败率仅25%,中间差了叁成,蒋居裕分析,这样的差距来自于企业对于大数据的眼界不够清楚,对于数据的需求与用途都看不清楚,加上企业缺乏跨部门的协作,造成了这样失败率差距。
蒋居裕说,数据在企业内部是会流动的,通常数据收集部门、储存部门与使用部门都是不同的单位,因此要完成一个数据的专案,企业内部就要跨部门协调,了解该如何运用数据,以及想要达到什么目的。因此需要一个能够整合跨部门资源的人,站在够高的高度才有可能达成。
数据分析投资渐增
巨量数据已成为企业在竞争激烈的产业中求生存的重要营运策略。以银行和其他金融服务公司为例,这些企业都开始对内部数据进行深度分析,以根据消费行为来评估贷款人风险、客户流失率,以及交叉销售或向上销售的机会。
最新调查报告发现,有10%的亚太地区企业在2014年投资了数据分析,而且2015年的投资比例将会增加到12%。
是的,次世代的巨量数据解决方案还必须具备即时分析数据的能力,硬体部分,必须紧密整合可横向扩充的基础架构,以及具备机器学习能力和商务应用软体,才能让布署作业既迅速又在掌控之中,同时达到最佳作业效能。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23