京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代:就是一个数据为王的时代
近年大数据(Big Data)成为一项相当热门的名词,几乎所有跟网络有关系的企业,包括政府都在谈大数据,但是台湾目前却很少看到真正有运用大数据的企业,真正利用大数据创造出价值。
大数据价值来自数据
台湾大数据科学家蒋居裕分析指出,经过3年的分析与观察,发现大数据的基本核心价值,最主要还是数据本身,这也是大数据中最有价值的地方,代表大数据时代就是一个「数据为王」的时代。
所有的大数据分析工具与相关产品,没有数据是动不起来的,有人曾用21世纪的石油比喻当前许多数据,蒋居裕指出,这个论点中有一个错误,因为石油是用了就没有了,但是数据只要产生了,就能无限次的使用,且越用价值越高。
其次,要创造大数据的价值,行业市场以及终端对终端(End to End)方案也相当重要,蒋居裕说,并非所有的行业都有利用大数据的需求,但是像电信、零售或是电子商务厂商这样的行业,对于大数据的运用就相当重要。
蒋居裕说,终端对终端方案之所以重要,是因为客户目前往往有钱但没有人,所以这些企业必须仰赖服务供应商去分析数据,完成数据的运用,因此服务提供商不仅要提供解决方案,更需要提供服务。
整体来说,蒋居裕以大自然比喻整个资讯科技(IT)市场,在大数据的时代,数据就像阳光、空气、水一样,是资讯与通信科技(ICT)与所有科学的基础,因此数据本身并不是一个产业,但却是许多产业的价值基础。
数据产品应运而生
当数据产生,有了大数据的价值基础之后,要创造出价值,就衍生出许多数据产品。蒋居裕指出,数据产品就是将一种或数种数据经过分析之后,以软体系统、报表、视觉化图表、决策辅助、云端服务等形式交付给客户。
以社群网站脸书(Facebook)来说,取得了使用者的数据,提供关键字广告或是提供开放的应用程式介面(API),让开发者可以使用这些数据,这都是属于数据产品的一种。
而要发展数据产品,蒋居裕说,必须有团队、数据、区域、工法与心法五大要素,其中最重要的就是团队,因为数据分析毕竟还是需要人,人才看得懂数据,有人有数据之后,对需要的数据区域利用工具、技能等进行分析(工法)。
人才能创造数据价值
除了如何去分析数据的工法之外,蒋居裕强调,对于数据分析运用的心法也相当重要,这包括了对数据运用的信念与知识等等。也因为如此,要创造大数据的价值,不单单是IT人员或是部门的问题,是企业管理的问题。
据国外分析发现,大数据的数据专案超过半数(55%)都会失败,但是一般IT的专案计画的失败率仅25%,中间差了叁成,蒋居裕分析,这样的差距来自于企业对于大数据的眼界不够清楚,对于数据的需求与用途都看不清楚,加上企业缺乏跨部门的协作,造成了这样失败率差距。
蒋居裕说,数据在企业内部是会流动的,通常数据收集部门、储存部门与使用部门都是不同的单位,因此要完成一个数据的专案,企业内部就要跨部门协调,了解该如何运用数据,以及想要达到什么目的。因此需要一个能够整合跨部门资源的人,站在够高的高度才有可能达成。
数据分析投资渐增
巨量数据已成为企业在竞争激烈的产业中求生存的重要营运策略。以银行和其他金融服务公司为例,这些企业都开始对内部数据进行深度分析,以根据消费行为来评估贷款人风险、客户流失率,以及交叉销售或向上销售的机会。
最新调查报告发现,有10%的亚太地区企业在2014年投资了数据分析,而且2015年的投资比例将会增加到12%。
是的,次世代的巨量数据解决方案还必须具备即时分析数据的能力,硬体部分,必须紧密整合可横向扩充的基础架构,以及具备机器学习能力和商务应用软体,才能让布署作业既迅速又在掌控之中,同时达到最佳作业效能。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01