
大数据时代的危害性与局限性_数据分析师
2月3日消息,白宫去年曾发表书面声明称,“大数据将作为历史性的驱动因素,帮助美国持久性地促进社会与经济活力”,其创造的社会价值与经济价值得以遵从该国提倡的“隐私、公正、平等、自主”。然而事实真的如此吗?大数据时代的危害性与局限性又是否会赶超其效益性?
某知名评论人表示,白宫这一努力平衡大数据成本与收益的举措,实则阻碍了其长远发展的大局观。此外,雅虎首席执行官玛丽萨·梅斯(Marissa Mayer)表示,数据驱动技术仅仅是政府、工业企业、民间社会做出重大决定的因素之一,而误用或滥用数据甚至比无数据所造成的结果更糟糕。
梅斯还指出,其公司内部许多人总是不断收集并解释某些数据,这不仅会导致另外一些重要因素的缺失,还会使被测算的系统发生不好的转变。
不当负担
大数据到底是否利大于弊并不是我们现阶段所关心的问题,而能否识别其益处的非显性局限才是技术人员最应该关注的。
大数据支持者的核心主张是,但凡数据,必定有正面价值。然而这个想法是错误的,对公司管理层而言,看起来似乎无伤大雅的信息搜寻,却往往对数据收集的主体带来了不当负担。
比如,全球大学排名与联邦量刑指南是两大复杂社会系统演变而成的量化值,该方面的相关人员均表示,这样的全方位大数据归集整理无疑损害了他们原本系统的秩序。
而第一个提出“大数据时代”这一概念的麦肯锡公司(McKinsey)也曾坦言,“事实上,截至目前,并没有有效的证据表明数据的强度与特定部门生产力之间存在一定积极的联系。”在随后的几年内,尽管信息量化的浪潮已开足马力,但相关证据依然少之又少。
易被操控
数据往往比人们想象的更易被操控。据Target前经理表示,公司管理部门曾尝试通过收集分析顾客问卷打分表以期提升顾客满意度,然而此举却造成员工伪造客户信息以夸大自己的工作表现。不受监管的可编制数据一旦被伪造,那么用它分析出的结果便不具任何意义。
而先前拥有自主执行权的负责数据编制的员工,此时却倍感压力重重,因为他们不得不接受不间断的中央监控。
不可量化
许多重要的问题是根本不适合也无法定量分析的,它们需要对价值、驱动力、所处环境及其他种种核心因素的评判。而找到一个绝对中立不偏不倚并受众人尊重信任的人,制定量化指标来对所有因素进行评定打分,是决计无法实现的。这便是一切社会机制中固有的难题。
衡量知识?
新基础科学知识对经济结构的影响过于分散和复杂,经济学家很难进行量化衡量。
当然,社会和经济制度的定量分析在最近几年存在系统性的缺陷,但这并不意味着未来的深入研究会遭遇同样的短板。然而,若是沿袭相同的基础方法论,那么即便收集再多的数据,这些缺陷也将持续存在。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05