
大数据营销 要注意规避三大陷阱_数据分析师
应用大数据进行精准营销,要注意规避如下三大陷阱:
1,有数不一定有据;
2,大而不全;
3,内生变量模糊了因果关系。
无论基于大数据的精准营销最后谁是赢家,笑到最后的应该是消费者,特别是新一代以网络为家的消费者。
大数据营销应用的现状可用这样几个“多”来形容:说的比投入的多;投的比做的多,如有些大型国企投入资金,建部门、雇海归,但并没有真正做什么;做的比懂的多,收集了一些数据,但读不出有价值的信息来;懂的比赚的多;认为今后赚的比现在想到的多。
如何才能实现光明的前景?一要养成大数据思维,二要避开三大陷阱。
大数据思维
大数据思维有如下四个维度。
定量思维:一切皆可测。POS机、网上购物、社交媒体以及各种各样的卡,都是大数据的来源。例如,通过传感器,利用红外线微波可以观测人的生理状态、脑电波等,如果驾车人员犯困,其心理指标发生变化并到一个临界值,汽车后台就会告诫驾驶员休息。赌场入口处的红外传感器,会根据脑部热量情况,分析进来的是冲动型赌徒还是冷静的赌徒。
汽车行业的大数据有人、车、环境三个来源。“人”不仅包括车主或者驾驶人员,还应包括乘客;“环境”不光是路面信息,还包括行车所到之处的周边信息,如旅馆、加油站、旅游景点等等,典型如地图应用。“车”的应用也已有案例,如美国一家保险公司为汽车加装了跟踪器,根据行驶数据来决定保险费率;米其林也会搜集与环境相关的数据,某智能芯片厂商为长途货运汽车提供的芯片,可以全球定位、调节物流和运输。
跨界思维:一切或可联。跨界有不同媒介、渠道间的跨界,如O2O和LBS,也有商业模式、数据应用的跨界。例如,GoPro是穿戴式照相机,但它也为寻求刺激的滑雪、跳伞运动爱好者,剪辑加工影像,并在电视上播出,吸引了广告和巨量的粉丝团队。
操作思维:一切要可行。应用大数据,不等于非得要上高大上的设备和硬件投入。例如视频公司根据用户观看视频的过程来决定推送什么广告,其算法可能比较简陋,但速度快。其次,要把数据和用户心理结合起来,营销精准但不要引起顾客的反感。第三,大数据管理要与KPI结合起来,协调各个部门的利益,否则大家对数据采集不积极甚至不合作。例如,运营部门如果看重节省运营成本,可能就对数据采集的意愿不强烈。
实验思维:一切应可试。比如,要想知道推荐的效果,可以做一个实验。一半消费者有推荐,一半没有。从短期看,推荐效果并不明显,但长期效果非常明显。因为推荐是购物体验的一部分。短时间内,消费者对所推荐的产品可能没需求,但到有需求时就会想起来,尤其是当推荐产品符合他们的品位和风格时。
三大陷阱
应用大数据进行精准营销,要注意规避如下三大陷阱。
有数不一定有据。应用大数据需要什么样的统计或逻辑背景?首先,描述。要能辨识出我们描述的人跟心里想的目标人群是不是一群人。其次,预测。理解现象、变量之间的相关性。第三,优化。理解因果关系,否则无法优化。简言之,预测需要相关性,而优化则需要因果性,而描述关键在样本的代表性。
大而不全。有些大数据应用收集的数据非常多,但对其倾向性却不清楚。解决的办法是跨界,收集企业之外的数据。例如,汽车制造商要跟电商结合,要跟社交媒体结合,通过跨界把数据做全,才能把精准营销做得更好。其次,要把营销、销售和库存等内部信息打通。
内生变量模糊了因果关系。大数据介入消费者购买过程越多,可能对消费者真实偏好的了解越少。例如,视频网站给某用户推荐了一个同性恋电影,他看了;再推荐一部,他又看了。这时,推荐系统就会认定该用户是同性恋,从而继续推荐,实际上该用户可能不过是一时好奇,最后深受其害。解决办法是定期实验。
基于大数据的精准营销到底谁会胜出?在我看来,要至少具备以下资源优势的一种:产品有优势、对客户特别了解、数据来源特别多、平台优势。目前,电商的优势显而易见,因为其数据量非常大,而且有平台优势。
制造商的机会在哪里?一要把产品做得非常好,二要联网提供服务,就像特斯拉,买车,更是买背后的互联网服务。然而,无论谁是赢家,笑到最后的应该是消费者,特别是新一代以网络为家的消费者。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15