京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析师属于哪种岗位
数据分析师属于哪种岗位?数据行业从广义上讲可以分为以下几个职位:
1、数据分析师
数据分析师更注意是对数据、数据指标的解读,通过对数据的分析,来解决商业问题。主要有以下几个次层次:
1)业务监控 2)建立分析体系: 3)行业未来发展的趋势分析主要技能要求:
数据库知识(SQL至少要熟悉)、基本的统计分析知识、EXCEL要相当熟悉,对SPSS或SAS有一定的了解,对于与网站相关的业务还可能要求掌握GA等网站分析工具,当然PPT也是必备的。
2、数据挖掘工程师
数据挖掘工程师更多是通过对海量数据进行挖掘,寻找数据的存在模式、或者说规律,从而通过数据挖掘来解决具体问题。数据挖掘更多是针对某一个具体的问题,是以解决具体问题为导向的。 主要技能要求:
1)数据库必须精通。 2)必须要会成熟的数据挖掘工具、数据挖掘算法。
3、数据建模师
数据建模师这个职位与数据挖掘工程师还是有本质区别的。数据建模师,更多偏向于中、小数据量,而且其使用更多更多是统计学的方法,而数据挖掘中的例如:决策树、神经网络、SVM等在这里是根据不会涉及的。
新进入数据行业的同学,可以根据自己的背景背景选择相应的职位,学数据、统计学的朋友更多可以偏向于建模师,而计算机特别是写编程出现和同学,可以走数据挖掘工程师,也许适应性更好,但这不是绝对的。
数据分析师的职位级别划分
不同公司对数据分析师的职位划分骚有不同,在一些中小型企业,没有成立独立的数据中心前,数据分析的相关职位往往是在譬如市场部、运营部这些部门之下,通常数据分析成员在2-4人不等。对于一些大型企业,有独立的数据部门的企业,其数据分析团队人员则是十到百人不等,其职位头衔有通俗的总监、经理、主管划分,也有助理、资深、专家之类的划分。
数据分析师这个职位目前呈现是二八原则,好的数据分析师的收入是非常高,差不多平均水平在13k左右,但是处境不好的数据分析人员只能拿到跟内勤同等收入的水平。
传统行业的数据分析师差不多只能拿到3-5K水平,这些大多数是处在数据处理、整理数据为统一口径的数据农民工,一般只接触的工具只有EXECEL,这类岗位三大招聘网站上有很多的传统行业里都有招这些数据分析专员,你可以对应看一下;第二阶段是刚刚进入互联网数据分析师行业的初中级数据分析师,待遇范围一般在5-8K,一般承担是从数据库里取到数据进行初级数据分析并形成报告,一般接触到的工具有SPSS、SQL等,比如@数据分析微招聘,185号岗位,这是一家公司需要大量招聘初级的数据分析师进行长期的培养广告公司。
编者对于数据分析师的理解给大家分享一下,一边是人工智能,这块我没有接触的太多就不说了,不过这块也是热门的职业;另一边是我们说的数据分析相关的职业,如果从行业分的话有传统行业与高利润行业比如互联网行业、金融、通迅等行业这些行业只要你的能力出色给的待遇不会太差,同时如果我们要换工作,也可以轻松的转向。
大多数的互联网行业特别是电商行业对于数据分析师这块还是比较看重,主要的原因其主要的资产除了产品、人员就是长期积累的数据而这些海量的数据已经不能用人工经验来还原业务,这就需要数据分析师对于数据进行归纳与还原商业规则与逻辑,一般主要涉及商业分析、用户分析、产品分析、运唯支撑等这几块;从中国统计网对于300多个岗位进行归纳后,我们发现,要求几乎雷同,同时也说明这个职业的互通性很强,说白了就是换个行业都可以在职场上存活下来;一般需要以下几个要求:
1、数据分析经验;
2、商业数据敏感度;
3、基本工具(SAS、SPSS、SQL、EXECEL等);
4、建模;
5、知识点(统计学、会编程);
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19