京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据为数据分析人才提供了新的就业岗位和机遇,目前企业中出现了大量的数据分析人才缺口,包括BI以及大数据等项目,都需要从业者具有越来越全面 的技能储备。Information Week根据一次大数据企业应用调查总结了数据分析从业者的十大发展趋势,希望对您能够有所启发。
一、薪酬持续增长
BI、分析和信息管理专业人士的薪水过去三年增长速度超过行业平均水平,管理职务的薪水排名在IW的23个IT职业大类收入调查报告中排名高居第四。
二、大数据人才供不应求
根据麦肯锡报告,仅仅在美国市场,2018年大数据人才和高级分析专家的人才缺口将高达19万。此外美国企业还需要150万位能够提出正确问题、运用大数据分析结果的大数据相关管理人才。
三、企业寻求大数据外包
在信息周刊的大数据企业应用调查中,660家受访企业倾向外包其大数据工作。其中25%的企业表示愿意外包给美国或者海外企业;17%的企业表示仅会考虑外包给美国企业;22%的企业表示将完全离岸外包给海外企业。
四、大数据人才出现代沟
根据埃森哲分析总监Stacy Blanchard的报告,新老两代BI、数据分析和信息管理人才在理念上存在加大差异,年轻的新一代数据分析人才更加开放,倾向使用开源工具和云计算,热衷最新技术工具和认证,但是Blanchard也警告企业,这些年轻的数据人才对企业的忠诚度更低,而且更加敏感,对工作环境更加挑剔。“如果他们不能与其他员工很好地协作,他们将无法了解数据分析结果对整个企业业务的影响。”
五、数据分析人才需要更多培训
在信息周刊的调查显示BI、数据分析和信息管理人才认为技术培训、认证课程和统计/分析培训是最重要的三种培训课程选择。有趣的是,数据分析人才对财务、营销等商务技能课程的兴趣远高于其他IT专业人士。
六、数据专家更多担任业务角色
相比其他IT员工,BI、分析和信息管理专家承担非IT任务的可能性远高于其他IT员工。
七、企业需要大数据科学家
企业需要的数据人才大致分为几类,主要包括产品和市场分析、安全和风险分析以及商业智能三大领域。产品分析是指通过算法来测试新产品的有效性,是一个相对较新的领域。在安全和风险分析方面,数据科学家们知道需要收集哪些数据、如何进行快速分析,并最终通过分析信息来有效遏制网络入侵或抓住网络罪犯。参考阅读:企业需要什么样的数据科学家
八、教育界对大数据人才短缺做出回应
如今企业寻找一位懂R统计语言编程或mapReduce编程的人才非常困难,大多只能从Google、Yahoo和微软等公司挖人。但是美国的大学已经做出调整,包括卡内基梅隆大学、加州理工州立大学、加州大学伯克利分校等大学都纷纷推出了机器学习课程。
九、数据分析工作的职业满意度更高
相比其他IT员工,BI、分析和信息管理人才对职业的满意度更高,同时也面临更高的挑战。
十、传统数据分析人才面临转型
传统的BI和信息管理老兵薪水一般都很高,但是为了延长职业生涯,他们必须开始拥抱和学习面向未来的数据分析技能,包括大数据平台、非结构化信息管理、文本分析技术、高级分析等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20