
数据中心行业同样需要互联网思维
如今互联网已经渗透到社会的各行各业中,人们的工作和生活无时无刻不在受着互联网的影响,任何一个传统行业都将生意做到了互联网上,数据中心行业也不例外。其实数据中心是与互联网关联最为紧密的行业,也是互联网发展的基石,没有数据中心的发展也就没有互联网如今的繁荣。数据中心作为互联网发展的基础设施,也在影响着互联网。网上流传着一个段子很有趣,因受互联网思维的影响,很多行业和职业都披上了互联网的外衣:以前化缘的改叫众筹了,算命的改叫分析师了,八卦小报改叫自媒体了,统计改叫大数据分析了,忽悠改叫互联网思维了,做耳机的改为可穿戴设备了,数据中心的都自称“云计算”了,办公室出租改叫孵化器了,圈地盖楼改叫科技园区了,借钱给朋友改叫天使投资了,放高利贷都改叫资本运作了。短短几年互联网冲击了几乎所有的行业,改变了整个社会的工作与生活方式,让本来很普通的业务都变成了高大上,穿上了互联网思维的外衣。
我们已经清楚了什么是互联网,也感受到了互联网给我们带来的变化,但是似乎还不是十分清楚到底什么是互联网思维。互联网思维可以用四个词语来高度概括,就是免费、速度、用户、质变。很多的互联网公司都是建立在“主营业务免费”的基础上,比如360的免费杀毒,百度的免费搜索,腾讯的免费聊天工具,通过这些业务留住用户,然后通过广告、游戏等其它方式受益;互联网技术门槛低,因此扩张速度就是生命,业绩每年翻番在这个行业里再正常不过了,在几年前团购的企业还有数千家,现在却仅剩下数十家,可见这个行业更替变化的速度了;互联网是最注重用户体验的行业,虽然互联网企业不是从用户身上直接赚钱,而用户对企业的关注和评论却能决定生死,所以互联网企业整天都在挖空心思在拉拢用户,监控网站的访问流量,流量就是互联网企业的生命线;互联网思维最强大之处在于可能由量变产生质变,这就是用免费或者成本价格销售产品带来用户规模之后的一种新的可能性,阿里巴巴成立前十年一直在寻找扭亏的商业模式,因为搭建的商业平台是开放给大家,并赚不到钱,后来随着用户量的积累,可以做一些广告,推出了支付宝,天猫等等,这些业务都是在阿里通过淘宝积累出大量用户和中小商家的基础上才开始赚钱的,正是淘宝用户数量达到了一定的规模后,才开始发生了质变,此后开始大赚特赚。
受互联网思维的影响,数据中心都开始叫“云数据中心”了,实际上很多数据中心在新增了几台服务器之后,做了一些虚拟化应用可能就开始说自己的是“云数据中心”,多半是赶时髦,觉得如今不和“云”沾上关系都不好意思说出口,冒充“云数据中心”的不在少数。其实现有的数据中心不做彻底的改变根本无法承载“云计算”,真正的“云数据中心”完全需要数据中心新建才能满足。当然也并不是所有的数据中心都需要“云计算”,具体要看是什么应用。不管数据中心是否真的需要“云”,但是却一定需要互联网思维。为什么这么说呢?我们来看看互联网思维对数据中心的影响。首先是免费,数据中心也可以免费?答案是肯定的,我们现在经常使用的云盘就是免费的,互联网企业将自己的数据中心免费给用户存信息,积累使用的用户。数据中心可以通过二次增值的服务来获益,比如向使用的用户推送广告,给用户系统做优化,给用户提供各种便利的收费业务等等。其次是速度,数据中心追求速度,这点正是互联网思维的重要特点,数据中心的访问速度越快往往能提升改善用户的体验,速度也体现在业务部署方面,若有新业务需要部署时,数据中心可以在短短几分钟内完成,这将大大减少维护费用的支出。再次是用户,数据中心需要的是海量用户的访问,只有达到规模效应,“云计算”才能发挥出技术优势来,数据中心也非常注重用户的体验,尽量满足每一个用户的需求,注重用户体验,提供可靠、安全的访问。最后是质变,任何事物都存在从量变到质变的过程,当数据中心发展到一定规模后,反而会产生巨大的回报。如今的“云计算”,“大数据”,“虚拟化”等各种新技术,都是基于海量数据和用户来实现的,也只有产生质变之后,这些技术才能发挥效能。比如如果一个数据机房只是一个办公大楼的办公网络,那也用不上这些,满足办公楼里人员上网的功能就可以了,一般都不需要多么复杂的数据中心技术,大量的部署“云计算”,“大数据”技术反而是画蛇添足了,所以数据中心需要质变,只有用户和业务积累到一定程度后,各种新的技术才有用武之地。
互联网思维强调开放、协作、分享,组织内部也同样如此,它讲究小而美,大而全,这些特征都是数据中心所需要的。数据中心应该更开放,而不是走向封闭,数据中心应该注重用户体验,而不是简单的关注大小,数据中心应该根据自己业务部署,而不应该盲目地建设得规模过大或多小,只有穿适合自己的鞋才是最舒服的。数据中心和互联网本来就是密不可分的,如今互联网思维影响着整个社会,也对数据中心产生了深远的影响。所有的数据中心新技术都包含有互联网思维在里面,具有了互联网思维的数据中心将是未来数据中心的主要特征。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07