京公网安备 11010802034615号
经营许可证编号:京B2-20210330
朋友圈背后的大数据猜想_ 数据分析师
世界上最遥远的距离,是你看到宝马中国,我却只看到可口可乐。
宝马、Vivo智能手机、可口可乐三组广告在微信朋友圈上线,迅速引爆了一波网络热议。大家不再议论“朋友圈里该不该有广告”,转而一遍遍地问着:“为什么你看到了宝马,而我只看到可口可乐?”“我用的明明是iPhone6,为什么给我推送国产手机广告?你们真的有大数据吗?”
对此,腾讯官方给小编的解释是:“为保证注重用户体验和给用户带来的价值,朋友圈广告采用了更加智能的技术。所以不是所有好友都会看到同样的广告。”至于“更加智能的技术”是什么,腾讯没有给出答案。微信方面也表示,朋友圈广告目前仍处于内测阶段,坊间流传的各种所谓“投放标准”,都是猜测。
虽然只能靠猜,但咱也要猜得有点技术含量。@新闻小编请来了在互联网行业从业多年、担任数据分析研究员的网友@Kevin,从技术角度来分析和“猜测”一下朋友圈广告背后暗藏的大数据秘密。
为什么有人看到宝马,有人看到可口可乐?
网传说法
此次的微信广告推送是基于大数据分析后进行的精准营销,根据对用户收入和消费能力的分析来决定投放何种广告;腾讯人工智能对用户的识别分类如下:年收入100万元以上的用户收到的是宝马广告;买不起iPhone6但买得起小米的用户收到的是 Vivo广告;连红米都买不起的用户收到的是可口可乐的广告。
专家猜想
大数据是可以实现以收入和消费能力来对用户进行群分的。简单来说,首先对用户的性别、年龄、在朋友圈发布的图文信息、用户之间的聊天记录、关注和阅读的公众号文章类型等数据进行收集,使用适当的算法来分析这些数据,得到能够描绘用户群体特征的预测模型,然后根据预测模型里的特征对用户进行逐一预测,判断其是否可以进行广告投放,以及投放的广告类型。
当然,这只是理论上的可行性。实践中,是否能够得到基于收入和消费能力的用户人群分类,需要看收集到的数据是否对收入和消费能力有指示作用。如果一个人收入很高但他发布的朋友圈消息和聊天的内容只是与一些很廉价的商品有关,那是无论如何也不可能解读出他有高消费能力的。
小编推断
你虽然是宝马车主,但是从不在朋友圈“炫富”,反而经常夸赞国产手机好用,最爱在微信购物里面秒杀9.9元的特价商品……那么,你在微信的广告系统里,应该是不太可能被划分为“年收入100万元以上”的。据此猜想,其实是你自己没有告诉微信你“有钱”,那就不能怪人家不给你看宝马广告了。
为什么有人一直刷不到广告?
网传说法
因为穷得惊动了微信后台!那些喜欢在朋友圈吹水,特别闲的,但没有收到朋友圈广告的,微信是在告诉你,没钱就好好干活,别刷手机了。
官方说法
根据腾讯科技的报道,微信广告引擎会选出高品质的种子用户作为广告的第一批曝光对象,只要种子用户在该条广告下面评论或者点“赞”,就能提高他们的好友看到该条广告的几率。
专家猜想
基于朋友链条关系来进行广告的扩散,这个逻辑在理论上和实践上都是可行的,但是准确性不好估计。其实除了这个“扩散逻辑”之外,在用户分类的时候,其中或许就包括了“不投放”这一类,所以有些人看不到广告也是很正常的。
小编推断
如果你自始至终都没有看到过朋友圈广告,首先你肯定不是微信的“种子用户”;然后也许是因为你的好友中没有“种子用户”,或者他们看到了但没有对广告进行评论或点赞;也许你一开始就被划分到了“不投放”的类别。至于“不投放”的理由是不是因为你穷,这个就得问腾讯了。
屌丝刷到了宝马,
这真的是大数据精准投放吗?
网传说法
收到宝马广告的用户不一定能买得起宝马,而更有可能是那些喜欢炫耀与转发的人,通过不断转发,广告主投放的广告费用才会体现出更大的价值。
专家猜想
大数据也会出错。毕竟这是数据统计,只要是统计就会有错,小概率事件时有发生,错了也不奇怪。大数据统计的是显著性,这种显著性是由大多数人的共同行为确定的,因此统计模型倾向于选择那些对多数人正确、而对少数人可能不准确的分类结果。
也许不准确的概率是10%,但这并不代表不会发生。理论上说,如果确实是按照用户的收入和消费能力来进行三个广告的分类投放,那么“屌丝收到宝马广告”这种情况应该算在10%的概率内,并不能以此说明大数据不精准。
当然,如果网友们的说法属实,那么宝马广告的投放策略是从传播角度考虑,怎样才能最有效地将广告扩散出去,而不是为了找出真正的宝马车主和潜在车主。这,就不是技术范畴的问题了。
小编推断
理论告诉我们,大数据也是会出错的。你被错位投放了,这是小概率事件,在数以亿计的大数据面前,是被允许的。实践告诉我们,也许,错位投放才是真正的策略,因为微信之父张小龙最爱强调人性,“没收到广告的展示失落,收到广告的对比虚荣”,这就是人性。
小编点题
微信大数据不只是做广告这么简单
微博上发的牢骚,朋友圈晒的自拍,QQ上的个性签名,淘宝上的每一笔交易,以及近年来科技界最火爆的智能穿戴设备记录的衣食住行信息……你在网络上所有的碎片化信息,经过大数据收集、转化、提纯,最终都可以拼凑出一个活生生的你来。
采访中,Kevin告诉小编,数据的收集、分析、应用,与用户的隐私之间,一直存在着矛盾。要想尽可能有效地运用大数据来让生活变得更便捷,又不接触任何用户隐私,这几乎是不可能的事情。就拿大家平时都特爱的搜索美食一事来说,你想搜索附近哪里有好吃的餐厅,又不让搜索引擎获知你的位置信息,这就很难办了。
一个拥有数据强势的公司是强悍的,但希望这种强悍是以良善为基础和目标。我们乐于拥抱新技术,但也希望在交出个人隐私的同时,能得到最好的保护。从这几天的朋友圈广告中,我们能得到的,也许不只是如何做好营销这么简单。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22