
2015年验证八大数据中心技术_数据分析师
2015年是新技术成熟的一年,IoE、混合云、大数据技术的逐渐商用使得数据中心的运行效率更高。
在2014的时候,市场在商业预算上有了新的发展,如云平台,大数据等新技术和先进的分析方法使得商业市场又找到了盈利点。
因此,2015将带来什么?下面有八个数据中心的技术的革新。
1.融合系统。根据需求自己定制的服务器。在IT分工越来越明细的今天,传统的大一统服务器系统已经不能适应所有的数据中心需求,可能有的数据中心需要高密集的并行运算,这样它们就需求扩展大量的GPU集成运算,传统的服务器显然并没有考虑这一点;有的数据中心主要是做数据储存的,这意味着什么,在诸如存储扩展方面有特别的需求的数据中心,可以自由搭配扩展更多储存的服务器,包括可扩展NAS等等。
2.网状结构网络。网状结构网络就是我们上一篇提到的现有东西和南北网络存在性能瓶颈,通过增加中间交换层来进行改善。大多数企业仍采用分层网络因为它支持用户在一个南北网络流量模式的网络来访问具体应用。网状结构网络这种扁平化的网络拓扑结构将改善东西和南北的通信。
3.闪存介质的存储。在数据中心的运算瓶颈里,往往不是CPU,内存或者网络速度,而是储存。储存性能改进的非常明显,其中最明显的是采用Flash介质的储存,这里面就包括SSD,SSHD,混合加速SAN等等技术。FLASH介质的储存是未来的发展趋势,虽然现阶段在容量和故障恢复方面相比传统的磁盘储存,FLASH有它自己的缺点,但是科技的进步是巨大的,很快FLASH储存将会大规模进入数据中心。
4.混合运算。不同的工作需要不同的资源,传统x86的计算能力在日益扩展的数据计算面前显得狭隘,CPU的运算已经不能满足大规模的单一并行运算。像Nvidia.AMD公司的图形处理单元GPUAPU,或Java卸载引擎,会部分替代CPU架构的运算工作,如并行编码,转码等等,这些效率比x86的CPU运算快上许多。
5.混合云技术。2015年估计是混合云技术大规模扩展的一年。混合云技术的灵活性可以将工作负载极大的提高。随着虚拟化和混合运算的普及,不同的厂家软硬件产品之间的选择性越来越大,混合云技术就是择其所需,包容扩展。在数据中心中,如何进行混合云技术的扩展将是未来发展的重点。
6.物联网(IOE)。随着数据量的迅速增长,家用设备或者任何其他设备都越来越智能化,甚至包括空调、洗衣机等设备。物联网将是这一切的基础智能化设备的一种升级应用,对于智能建筑,自动化车间,先进的跟踪和客户分析,物联网是至关重要的。
物联网将会采集海量的数据,这些大数据看起来很乱,但是对于商业大数据分析却是一种分析的基础,这也是物联网大规模扩展的一个因素。
7.能源的使用效率提高。从绿色节能的观点来看,可持续的能源和提高能源转化效率是每一个公司应该有的目标。
针对现代数据中心的冷却方法,使用尽可能少的能量。在非高密集运算的环境,服务器的处理器可以从性能比的角度去考虑使用低功耗的处理器, 这些处理器往往比相同等级型号的普通处理降低了50%的功耗,这对于服务器散热和提高性能比会有很大的帮助,同样的,在设备的电源等部件的选用角度,也需要加入能耗比的考虑。
8.与业务对齐。更好地了解什么样的商业将确保业务是否可行的和有效的。
从商业的角度来看,找出项目和目标的最大约束和建议将是决策的重要部分。随着世界的变化,业务已经被视为企业的核心部分。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08