
安全真实考验大数据时代_数据分析师
在刚刚过去的2012年,“大数据”的概念在商业领域突然走红。但另一方面,大数据也引发了这样的担忧,商家在使用这些海量信息的同时会不会造成消费者信息泄露。
2012年12月28日,十一届全国人大常委会第三十次会议审议通过关于加强网络信息保护的决定草案。关于个人信息保护,决定草案明确了一个重要原则,就是国家保护能够识别公民个人身份和涉及公民个人隐私的电子信息。同时,草案还对个人信息收集者的义务作了多项规定。对于过去一年被人们热议的“大数据”而言,这个决定草案可谓正当时。
大数据的价值何在
在全球500强企业中,90%以上的重要投资与经营决策都取决于充分的数据分析支持。中国商业联合会数据分析专业委员会会长邹东生认为,大数据时刻影响到企业的整体运营链的管理,从前端的管理,到后端的供货商、物流等都受到深刻的变化和影响。
美国政府则在2012年3月29日宣布投资两亿美元拉动大数据相关产业发展,将“大数据战略”上升为国家意志。
中国商业联合会副会长刘建沪介绍说,随着互联网的快速发展,中国的电子商务企业纷纷组建了数据分析部门。大数据的市场有多大?中央财经大学中国经济管理研究院博士张永力说,国外大数据行业约有1000亿美元的市场,而且每年都以10%的速度在增长,增速是软件行业的两倍。
据悉,为迎接大数据的到来,2011年10月,工信部确认京沪深杭等5城市为“云计算中心”试点城市。而真正的问题或许不在于怎样建设“云计算中心”。国家信息中心常务副主任杜平直言不讳:“应对大数据的到来,需要不断建基础设施,但是建了干什么,有些数据需要存储,也有很多数据可能不需要储存。”
事实上,目前企业在还没有能力深度挖掘出数据的价值之前,存储大量的数据,进行大规模的投资建设,的确有“浪费”之嫌。
数据真实性与安全性考验
邹东生坦承,大数据行业尚处在跑马圈地阶段,行业乱象不可避免。他介绍说,虚假资质、服务不规范、质量控制不严格等是这个行业存在的主要问题。
在中国改革基金会国民经济研究所副所长王小鲁看来,这个行业的真正考验来自数据的真实性。王小鲁说,数据分析的基础首先应该是准确的基础数据,“打个比方,数据分析就像有米下锅做饭,米的质量如何,可能对做出来的饭有决定性的影响。”
邹东生介绍说,在采集、整理、存储、传输的过程,人为因素很多,可能会有一些所谓的“难看”的数据被丢弃。更有甚者,有些数据可能会在这个过程中被篡改。
除了搜集企业内部的数据容易存在失真问题,企业对外部数据的利用也是真伪难辨。邹东生指出,这些外部数据多是通过公开渠道或者商业渠道获得的数据,一方面是真伪难辨,另一方面是这些数据多是统计分析加工后的呈现,如果照搬,往往会造成误差。
随着大数据时代的到来,个人数据安全也一直备受社会关注,从密码泄露到涉嫌恶意收集用户隐私,数据安全问题挑战着相关行业的商业道德底线。邹东生坦言,“大数据”里肯定会涉及到用户信息,甚至是相对隐私的数据的分析问题。
从“大数据”到“大分析”
大数据存储技术的提升,造成整个社会数据开始以几何级数递增,但数据本身不能带来价值,它的真正价值在于对其精准的分析。正如中国商业联合会数据分析专业委员会数据中心主任赵兴峰所言,大数据时代,数据是企业未来发展的“金库”,“但是,如果企业只是简单存储数据,而不是分析数据,尽快挖掘‘金库’里的‘黄金’,它仍然可能死在半路上。”
从“大数据”到“大分析”,赵兴峰认为,除了要避免盲目建设,国内的企业还要避免这样一个误区,就是把大量资金投入到可见的计算机硬件和软件上,而往往不愿意在“人”身上做投资,“现在人才市场上能够胜任数据深度分析和挖掘的人才都是凤毛麟角,即使能够找到,也是‘昂贵’的,可能无法留住。所以企业需要着重培养这方面的人才。”
而实现从“大数据”到“大分析”的转变,数据的真实性是前提,数据的安全性是发展命脉。如何保证数据的真实性?王小鲁认为,需要充分利用分析者的智慧去质疑,透过现象看本质。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19