
大数据是个什么东西_数据分析师
说实话,我有很多年以来比较讨厌来自信息领域的一些名词:数字地球、云计算、决策支持系统、专家系统、复杂性科学、数据挖掘、大数据。这些玩意一个名词接着一个名词,让人感觉总是炒一些新鲜的概念。其实上述名词确实也有一定的意义,但是它们发挥的科学推动作用不大。我为啥讨厌呢,是因为我认为是这些概念的受害者。因为我曾经是计算机粉丝,当然也喜欢学习研究这些玩意。最后发现我自己走了弯路,费了很多功夫阅读这些,什么真正的东西都没学会。
其实在这些名词出现以前,各学科人们早就在使用这些概念了。如数字地球,吸引了大批地理界、GIS界的年轻人,最后我们发现除了会编几个计算机图形可视化的程序外,其它一无所获。看着别人发表着大把的SCI,我们真纳闷,天天研究新概念,还不如研究老古懂学科。后来,我们发现地球科学领域的数据(遥感、气象资料)绝对是海量的,数据生产的速度远远超过了人们利用数据做研究的速度。Google地球也发布了。实际上数字地球确实是建成了,但很少有人说我们是在做数字地球。不谈数字地球的人做了不少数字地球的事,天天谈数字地球的人什么也没搞出来。
另外决策支持系统是个什么玩意,我读了很多这方面的书,感觉也很虚无飘渺。
曾经有一个叫做“元胞自动机”(CA)的概念也很流行在GIS界,但最终也不知如何应用该理论,没什么好的论文或成果发表出来。等到后来,我们了解了水文领域的分布式水文模型、大气领域的气候模式、流体领域的CFD和格子Boltzmann模型,发现按照CA的定义来看,上述模型其实都是CA的范畴,只是针对特定的专业性了。CA的概念远不如上述模型应用那样普及,专业性也不够强。不可否认的是,确实有少量学者开发出了CA模型,有一定的用处。
至于大数据,以前它相应的称呼应该是数据挖掘。包括刚刚仙逝的老邪院士为代表的很多遥感学者,都在分析海量遥感数据,难道这不是大数据?那些从事气候变化研究的相关学者天天都在利用海量资料分析各种气候指标,难道不是在数据挖掘?可是谁又在写论文时,把大数据和数据挖掘列为关键词呢?
当然,我也认识到了大数据这个词主要针对社会科学领域。社科领域的大数据特指那些形式杂乱、细碎、海量如牛毛的聊天信息、Email信息、网页新闻信息、广告信息,以及发表在期刊上的信息。这些数据不像遥感数据、大气数据那样可以以特定数据集的形式整理和存放。这就需要研究分析这些资料的人要有特定的数据整理能力。一种方法是使用一些软件,不过软件大都是针对特定形式的数据集,如文献计量分析软件。它们不能适应于各种杂乱数据。另一种方法就是取决于研究者自己的特殊能力了,这样的好处是不需要拘泥于现有软件,可以适应任何数据分析。比如使用python语言来自行编代码实施数据搜索。我认为自己是具备这个能力的!我不认为我是在吹牛。但是我却不从事这方面的研究。
虽然python语言不难,会用它的人极多,但事实证明不是每个从事科研的人都最终能学会的。
虽然我认为大数据这个词比较土,很一般化,但它在社科领域确实具有特定的意义。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04