京公网安备 11010802034615号
经营许可证编号:京B2-20210330
新价值大数据解决城市大问题_数据分析师
城市化进程让人们在享受现代文明成果的同时,也带来了交通拥堵、能耗增加、空气恶化等问题。而随着大数据分析技术的发展,大数据也能运用在城市管理与环境治理之中。2014年5月,环境保护部信息中心与微软(中国)签订了谅解备忘录,双方将共同优化Urban Air(基于城市大数据计算城市大气质量的计算模型),进一步研发该模型为政府环境管理服务的功能,共同探讨并践行大数据在环保领域的业务化应用。
近日,2014全国环境信息技术与应用交流会在海口举行,围绕“十二五”环境信息化任务目标和国内外环境信息技术发展趋势,大会通过主题报告、高峰对话、专题论坛等形式,就“改革促融合,信息强环保”的主题进行广泛交流和经验分享。那么,大数据将如何在环境信息领域创新应用,该应用将对环境治理发挥怎样的作用?会上,记者采访了微软亚洲研究院主管研究员郑宇博士,为大家揭开大数据里的秘密。
微软Urban Air
气象部门已经能够对于天气的变化做到较为准确的预报,而这种对于规律的认知,现已延伸到了与人类生活同样密切的其他方面。“今天几点出门锻炼健康?”“下班后哪条道路会更拥堵?”“明天城市里哪一片区域PM2.5会比较高?”……“这些看似不可预知的事件,利用大数据都可以进行精确模拟和预测。”郑宇说。
“我不是环境专家,这些对于环境保护方面的分析全部基于对异构数据的研究。”郑宇举例说,在同一时刻、同一城市的不同地方,空气质量受到交通流量、工业排放、道路密度等因素影响差别会很大,这些因素在城市不同地方都不一样,这让我们很难精确地判断一个没有建空气质量监测站点的地方,空气质量到底如何,它不能用平均值来替代,因为是非线性的。
“怎么做呢?我们用两部分的大数据做实时的细粒度空气质量分析,第一部分是已有空气质量监测站点实时和历史观测数据。第二部分加了其他数据源,其中第一个就是气象条件,比如说刮风、下雨、风速、气压、湿度等;第二个是交通流量,比如这个区域里面车的平均速度是多少;第三个是该区域人的移动性,有多少人进出这个区域;最后是这个区域里面的兴趣点分布,比如有多少厂矿,有多少个电影院、酒吧、红绿灯等。”郑宇说,有了这样的异构数据之后我们就可以建立一个地方的数据分布,以及这个地方空气质量观测值的网络模型,最后得到一公里乘一公里范围内的细粒度。
郑宇表示,基于这样的数据分析,就可以为管理决策者们提供科学依据。“我们可以做实时城市空气质量和污染物排放预警,比如这一区域产生大量的污染,我们可以对周边的老百姓进行预警。除此外,在做交通限流管控的时候可以更加精确。因为某些区域并不是因为车辆产生的尾气排放导致的污染物,我们只需要在某个特定时间段对某个区域做单双号限行即可,没有必要做全城限行。”
郑宇说,以上的例子说得就是城市计算中异构数据的融合问题,这也是大数据的核心问题。除了常用的环境数据之外,我们需要更多其他的异构数据源,可能看上去和环境数据并不直接相关,但是能够帮助我们解决环境的问题。对此,环保部信息中心主任程春明表示赞同,他认为如何更好地融合和利用城市中的异构数据,对环境信息化工作至关重要。郑宇表示环保部信息中心对于双方的研究合作给予了大力的支持,除京津冀及周边地区,未来双方希望在全国环保重点城市推广Urban Air模型。
在2014全国环境信息技术与应用交流会上,环保部信息中心副主任徐富春作了数据科学方面的专题报告,并分享了信息中心与微软等企业在数据技术(Data Technology)方面的交流与合作,以及在城市空气主要污染物时空分布计算上的探索和实践。徐富春表示,数据科学是信息化新的发展方向,数据驱动是一种新的信息化思维模式,以环境信息化为例,我们应该运用数据驱动推动环境管理优化升级和转型,“但这还需要大家形成一个数据共识去推动这一工作,各地区、各部门需要积累或者建立数据清单和数据资源,建立起跨地区跨部门的合作平台,更好的让大数据为环境管理和决策提供服务。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01