
新价值大数据解决城市大问题_数据分析师
城市化进程让人们在享受现代文明成果的同时,也带来了交通拥堵、能耗增加、空气恶化等问题。而随着大数据分析技术的发展,大数据也能运用在城市管理与环境治理之中。2014年5月,环境保护部信息中心与微软(中国)签订了谅解备忘录,双方将共同优化Urban Air(基于城市大数据计算城市大气质量的计算模型),进一步研发该模型为政府环境管理服务的功能,共同探讨并践行大数据在环保领域的业务化应用。
近日,2014全国环境信息技术与应用交流会在海口举行,围绕“十二五”环境信息化任务目标和国内外环境信息技术发展趋势,大会通过主题报告、高峰对话、专题论坛等形式,就“改革促融合,信息强环保”的主题进行广泛交流和经验分享。那么,大数据将如何在环境信息领域创新应用,该应用将对环境治理发挥怎样的作用?会上,记者采访了微软亚洲研究院主管研究员郑宇博士,为大家揭开大数据里的秘密。
微软Urban Air
气象部门已经能够对于天气的变化做到较为准确的预报,而这种对于规律的认知,现已延伸到了与人类生活同样密切的其他方面。“今天几点出门锻炼健康?”“下班后哪条道路会更拥堵?”“明天城市里哪一片区域PM2.5会比较高?”……“这些看似不可预知的事件,利用大数据都可以进行精确模拟和预测。”郑宇说。
“我不是环境专家,这些对于环境保护方面的分析全部基于对异构数据的研究。”郑宇举例说,在同一时刻、同一城市的不同地方,空气质量受到交通流量、工业排放、道路密度等因素影响差别会很大,这些因素在城市不同地方都不一样,这让我们很难精确地判断一个没有建空气质量监测站点的地方,空气质量到底如何,它不能用平均值来替代,因为是非线性的。
“怎么做呢?我们用两部分的大数据做实时的细粒度空气质量分析,第一部分是已有空气质量监测站点实时和历史观测数据。第二部分加了其他数据源,其中第一个就是气象条件,比如说刮风、下雨、风速、气压、湿度等;第二个是交通流量,比如这个区域里面车的平均速度是多少;第三个是该区域人的移动性,有多少人进出这个区域;最后是这个区域里面的兴趣点分布,比如有多少厂矿,有多少个电影院、酒吧、红绿灯等。”郑宇说,有了这样的异构数据之后我们就可以建立一个地方的数据分布,以及这个地方空气质量观测值的网络模型,最后得到一公里乘一公里范围内的细粒度。
郑宇表示,基于这样的数据分析,就可以为管理决策者们提供科学依据。“我们可以做实时城市空气质量和污染物排放预警,比如这一区域产生大量的污染,我们可以对周边的老百姓进行预警。除此外,在做交通限流管控的时候可以更加精确。因为某些区域并不是因为车辆产生的尾气排放导致的污染物,我们只需要在某个特定时间段对某个区域做单双号限行即可,没有必要做全城限行。”
郑宇说,以上的例子说得就是城市计算中异构数据的融合问题,这也是大数据的核心问题。除了常用的环境数据之外,我们需要更多其他的异构数据源,可能看上去和环境数据并不直接相关,但是能够帮助我们解决环境的问题。对此,环保部信息中心主任程春明表示赞同,他认为如何更好地融合和利用城市中的异构数据,对环境信息化工作至关重要。郑宇表示环保部信息中心对于双方的研究合作给予了大力的支持,除京津冀及周边地区,未来双方希望在全国环保重点城市推广Urban Air模型。
在2014全国环境信息技术与应用交流会上,环保部信息中心副主任徐富春作了数据科学方面的专题报告,并分享了信息中心与微软等企业在数据技术(Data Technology)方面的交流与合作,以及在城市空气主要污染物时空分布计算上的探索和实践。徐富春表示,数据科学是信息化新的发展方向,数据驱动是一种新的信息化思维模式,以环境信息化为例,我们应该运用数据驱动推动环境管理优化升级和转型,“但这还需要大家形成一个数据共识去推动这一工作,各地区、各部门需要积累或者建立数据清单和数据资源,建立起跨地区跨部门的合作平台,更好的让大数据为环境管理和决策提供服务。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01