
“大数据”帮国足找差距_数据分析师
竞技体育中,体能是实施技战术、取得好成绩的基础;运动员若体能状况不佳,容易引起突发伤病,也会导致比赛陷入被动甚或落败。回顾过去十余年,各支足球国字号队伍都曾受困于此,国脚们在比赛中体能透支,跑不动、腿抽筋儿并不鲜见。
在体能训练方面,中国足球到底差在哪儿?借着2014球类项目大数据和体能训练研讨会上周末在京召开的机会,记者采访了国内外相关领域专家。
德国经验拓宽教练视野
本次研讨会为期3天,由国家体育总局主办、北京市体育局承办,邀请十多位大数据与体能训练方面的国际专家,为球类项目的国家队管理者和教练员讲课共计20多节,内容涵盖体能训练的方方面面。
美国EXOS体能训练机构创始人马克沃斯特根担任过德国男足体能总教练,德国队在今夏巴西世界杯上的成功令其团队声名鹊起。我们秉承‘每天都是竞 赛日’的理念,运动员须在思维、营养、动作和恢复环节作出调节,这样有助于比赛中执行技战术,延长运动生涯黄金期。马克分享经验时说,过往10年德国队 在进行体能训练过程中依照数据监控,针对上述4个方面提供不同的有氧训练,这是最关键的因素之一。
EXOS团队数据分析师达西诺曼在德国足球队的预康复、康复、再生方法的讲座中也介绍道,为运动员建立个人档案,进行数据监测和科学调理,能更好实现体能康复。
对此,国奥男足主帅傅博、国足教练员区楚良等人很感兴趣,并在互动中主动举手向马克提问。说到研讨会的收获,傅博连称非常好,他们有多年的成功 经验,今后还得坐下来探讨,如何促进球类项目尤其是足球的体能训练。傅博举例称,此前国足集训曾尝试一些新的方法练习腿部力量,这次会议发现人家大师 也是这么练的。总之,拓宽了我们教练员的视野。
有数据不用 教练宁信经验
以数据监控和体能训练为核心的训练基础,对运动员而言是最重要的。马克说,如今高科技全面应用到运动队的体能训练中。
我国相关领域的研究现状如何?其实我们不算落后。曾多次参加国家男、女足集训的北京体育大学运动康复系副教授魏宏文表示,这些年总局和不少省市 的体育科研所、体育院校都在做此类研究。打个比方,国脚们踢完一个赛季联赛后身体疲劳,哪儿累、累到什么程度、怎么恢复,我们也可以数据监控。
数据的搜集、分析和处理,为体能训练服务,但目前两者依然有些脱节。一位与会专家指出,科研团队用数据说话,采纳与否取决于教练员,一些教练更相信 自己的判断,按以往经验来安排队员的训练计划,有的还以占用太多训练时间为由,比较抵触数据监控。该专家呼吁,对于新科技手段,足球教练特别是基层、后 备梯队的教练员仍需进一步更新观念。
另外,在对抗性较强的国际比赛中,国脚们经常给外界以体能差的印象。魏宏文认为,这与国内基层、梯队的训练水平不高有关。以中国女足为例,由于踢 球的人减少,女足整体水平从地方队开始下滑,运动员应付国内比赛的体能训练强度,远远达不到国际比赛的要求,到了国家队再慢慢‘回炉’练体能,时间肯定 不够用。纵使卡马乔、佩林等名帅率领的外籍教练团队,也需较长的适应期,因人制宜地为男足国脚开出体能训练处方。
缺钱缺人 科研力量待补强
值得注意的是,各支足球国字号队伍的科研保障力量差异很大,有些球队的科研人员极其匮乏。受编制所限,我们很多时候集训仅设一名科研教练,要兼顾全 队的体能、康复、营养等,分身乏术。谈及国外优秀运动队的复合型团队,一位中国女足教练组成员非常羡慕,人家都是分工细致,配置专门的营养师、康复 师,甚至有心理辅导员,全方位保障运动员。马克也称,中国的运动训练过分强调技战术,缺乏对身体新陈代谢的监控,体能康复师也很少。
这次会议初步了解到新的体能训练理念,要跟人家合作,看看怎么提高专项能力。傅博告诉记者,目前国奥队的体能训练由两三个人临时负责,今后肯定需要更专业的体能训练。
我们希望通过请外国专家授课来转变观念,或者说竞技体育需要一次革命。国家体育总局副局长蔡振华透露,中国奥委会自伦敦奥运周期起与EXOS等机构合作,尽管他们的新理念与队伍结合时存在争议,不过,总体上新理念代表着先进的方向。
蔡振华表示,一些集体项目在建设复合型团队的过程中面临着编制和资金不足的问题,当前的办法是通过总局和各省市的努力以及市场运作来解决,但一些队伍要想在人力配置上达到国外优秀职业队的水平,暂时还做不到。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23