游戏场景管理的八叉树算法是怎样的_数据分析师
八叉树(octree)是三维空间划分的数据结构之一,它用于加速空间查询,例如在游戏中:
总括而言,前3个应用都是加速一些形状(frustum、ray、proximity shape如球体)的相交测试(intersection test)。
简单来说,八叉树的空间划分方式是,把一个立方体分割为八个小立法体,然后递归地分割小立方体。
图片来源Wikipedia Octree
相似地,四叉树把一个正方形空间分割成四个小正方形。由于三维空间较难理解,之后本答案主要以四叉树作图示解释。
四/八叉树有多种变种,先谈一个简化的情况,就是假设所有物体是一个点,这样比较容易理解。
把每点放到正方形空间里,若该正方形含有超过一个点,就把该正方式分割,直至每个小正方形(叶节点)仅含有一个点,就可以得出以下的分割结果:
图片来源:CS267: Notes for Lecture 24, Apr 11 1996
这种做法是adaptive的,就是说按照一定的条件(叶节点只能有一个点)来进行分割。实际上,我们可以设置其他条件去决定是否分割一个叶节点,例如节点内的点超过10个,或是最多分割4层就不再分割等等。
在分割时,我们只需检查点是在每个轴的哪一方,就能知道该点应放置在哪个新的节点里。
建立了一个四/八叉树之后,我们可以得出一个重要特性:
如果一个形状S与节点A的空间(正方形/立方体)不相交,那么S与A子树下的所有点都不相交。
那么,在相交测试中,我们可以从根节点开始,遍历四/八叉树的节点,如节点相交就继续遍历,如不相交就放弃遍历该子树,最后在叶节点进行形状与点的相交测试。这样做,一般能剔除许多点,但注意最坏的情况是所有点集中在一起,那么就不起加速作用。
———————-
9月4日晚更新
当创建了一个四/八叉树之后,如问题所提及,有时候需要新增、删除物体(目前我们谈及的是点),以及更新物体(点)的位置。
更新位置的最简单实现,就是删去物体再重新安插。然而,显然的优化方法就是,检查旧位置和新位置是否位于同一个叶节点的正方/立方范围里,如果没超出范围,就不需要做删除再安插的工作。
但如果超出范围呢?除了简单地从根开始找合适的节点,也可以使用一些搜寻方法找到相邻的节点,如[1]。这里就不谈这些细节了。
了解最基本的四/八叉树后,可以把问题扩充至管理占面积/体积的物体。虽然我们可以每次比较场景物体和正方形/立方体是否相交,但为了性能,一般是使用物体的包围体(bounding volume)而不是物体本身。例如是使用包围球(bounding sphere)、轴对齐包围盒(axis-aligned bounding box, AABB)或定向包围体(oriented bounding box, OBB)。这个做法是保守的。
但无论是用物体的精确形状,还是使用包围体积,把它们放置在四/八叉树中会有一个问题:它们可能会与节点的边界相交。例如
图片来源:Akenine-Moller, Tomas, Eric Haines, and Naty Hoffman. Real-time rendering 3rd edition. p.655, AK, 2008.
在上图中,七角星最后处于两个叶节点。这时候至少有两个解决方法:
第一种方法的范围比较精确,但如果物体的大小相差很大,大体积的物体便需要被大量小范围的叶节点引用,而且管理上也会很麻烦。第二种做法是较常用的方法。然而,第二种方法的范围可能非常大,例如物体刚好在场景的中心,即使是一个体积很小的物体,都只能放于根节点里。
要解决这个问题,可以考虑到在相交测试中,扩大包围盒总是保守的(这里的保守是指近似化不会做成错误结果)。如果把四叉/八叉树的正方/立方空间当作包围盒,那么扩大这些包围盒以容纳刚好在边界上相交的物体也是保守的。这就是松散四/八叉树(loose quadtree/octree)[2] 的思路。
图片来源:Akenine-Moller, Tomas, Eric Haines, and Naty Hoffman. Real-time rendering 3rd edition. p.656, AK, 2008.
以上所说的都是一些基本原理,在实现时要考虑具体的数据结构、内存布局等问题。现在一般认为,完全使用八叉树可能不利于缓存,用一些扁平的结构并利用SIMD可能更可提高性能,或是需要混合的方案,如八叉树只有两、三层,叶节点内使用扁平的方式储存各种包围体。
因此,除了传统的四/八叉树实现,也可以参考一些更新的技术,例如OpenVDB [3]中的一些思路。
[1] Frisken, Sarah F., and Ronald N. Perry. “Simple and efficient traversal methods for quadtrees and octrees.” Journal of Graphics Tools 7.3 (2002): 1-11.
[2] Ulrich, Thatcher. “Loose octrees.” Game Programming Gems 1 (2000): 434-442.
[3] K. Museth, “VDB: High-Resolution Sparse Volumes With Dynamic Topology”. ACM Transactions on Graphics, Volume 32, Issue 3, Pages 27:1-27:22, June 2013. http://www.museth.org/Ken/Publications_files/Museth_TOG13.pdf
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18