京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据10大发展趋势_大数据发展趋势_数据分析师
这一候选发展趋势得到了委员们最多的关注。数据的资源化是指大数据在企业、社会和国家层面成为重要的战略资源。大数据将成为新的战略制高点,是大家抢夺的新焦点;大数据将不断成为机构的资产,成为提升机构和公司竞争力的有力武器。
大数据对于隐私将是一个重大挑战,现有的隐私保护法规和技术手段难于适应大数据环境,个人隐私越来越难以保护,有可能会出现有偿隐私服务,数据“面罩”将会流行。而且预计2014年将会颁布关于大数据隐私的标准和条例。
大数据处理离不开云计算技术,云计算为大数据提供弹性可扩展的基础设施支撑环境以及数据服务的高效模式,大数据则为云计算提供了新的商业价值,因此从2013年开始大数据技术与云计算技术必然进入更完美的结合期。总体而言,云计算、物联网、移动互联网等新兴计算形态,既是产生大数据的地方,也是需要大数据分析方法的领域。
2014年将会有更多基于海量数据(知识)的智能成果出现,甚至有可能产生人工大脑。至少类似于Chinese Room这样的问题将得到彻底解决。因为所有人们能想到的问题,在问之前就都已经被人回答过了,所以,即便在没有思考和逻辑的情况下,也可以利用前人的经验同样可以起到脑的功能,甚至也可能通过大数据直接进行推理。
在大数据分析上,2014年将出现革命性的新方法。就像计算机和互联网一样,大数据可能是新一波的技术革命。基于大数据的数据挖掘、机器学习和人工智能可能会改变小数据/小世界里的很多算法和基础理论,这方面很可能会产生理论级别的突破。
大数据的安全令人担忧,大数据的保护越来越重要——大数据的不断增加,对数据存储的物理安全性要求会越来越高,从而对数据的多副本与容灾机制提出更高的要求。进入2013年,网络和数字化生活使得犯罪分子更容易获得关于人的信息,也有了更多不易被追踪和防范的犯罪手段,可能会出现更高明的骗局,也就是说大数据已经把你出卖。
2014年数据科学作为一个与大数据相关的新兴学科出现,将有专门针对数据科学的专业形成,有博士、硕士甚至本科生出现。同时,有大量数据科学的专著出版。
数据共享联盟将在2014年逐渐壮大成为产业的核心一环。数据是基础,之前在科技部的支持下,已建立了多个领域的数据共享平台,包括气象、地震、林业、农业、海洋、人口与健康、地球系统科学数据共享平台等。之后,数据共享将扩展到企业层面。
大数据将在2014年催生一批新的就业岗位,如数据分析师、数据科学家等。具有丰富经验的数据分析人才成为稀缺资源,数据驱动型工作机会将呈现出爆炸式的增长。大数据领域最优秀的科学家们纷纷转行股票、期货、甚至赌博(能比别人多看远一秒钟,就是效益)。
现在的大数据,将来都不够大。2014年,大数据将获得更多的关注、研究、开发和应用,所引起的结果是:体现大数据特征的体量大、速度快、模态多、价值密度低等几个V的特性将变得更加极致。尤其是大数据的价值密度会越来越低——数据不断地增长,如何去除大数据中的噪声等垃圾数据,进而从中挖掘和提取出有价值信息的难度也随之增大。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21