京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代,再不努力,小心被机器人枪了饭碗,专家们对于未来的情况存在意见分歧。这可能看上去挺正常,但如果皮尤研究中心(Pew)进行的一项关于机器人替代劳动力的新调查得出如此结论,那就意义重大了。关于“机器人抢占工作岗位”的所有讨论中,2551名受访专家在下列问题上意见分歧巨大。
到2025年,被网络化、自动化的人工智能应用和机器人设备所替代的工作岗位数量会超过它们所创造出来的岗位数量吗?
可能最明显的一个关键结论是,不管预言家们在什么时候声称哪些工作将会自动化、哪些不会,人们总是半信半疑。这类的研究的价值在于能够帮助我们思考自动化设备将在社会中扮演什么角色,但事实是我们还不知道哪些工作在什么时候会被自动化,也不知道有多少这样的工作。
有人担心会被机器取代,对他们来说,专家们有意见分歧似乎是一种安慰——不幸的是,事实绝非如此简单。
相反,第二个关键结论是,对上述问题持怀疑态度的人占了上风。传统观点始终认为,虽然短期内工人会被新技术所替代,但从长期来看就业率并不会降低。
芝加哥大学今年二月曾邀请经济学家参与投票,结果验证了上面这个长久以来的共识。受访者中仅有2%的人认为使用自动化设备会导致美国就业率降低。
在这个背景下,皮尤研究中心所得出对半开的结论更让人头疼。其中的差距一部分可能反映出经济学家总体上保持乐观,但是也释放出信号:这一波新技术带来了前所未有的影响。
过去,对新技术导致失业的担忧还是虚惊一场,原因有两点:一是人们对商品和服务的需求持续上升,二是工人们学习新技术后找到了新工作。相比过去,我 们不再需要那么多人来生产食品,但是我们需要更大的房子,更快的车子,还有更广泛的娱乐需求,这些足以填补并超出原来的需求。农业从业者最终找到了新工 作,生产出满足新需求的产品,社会也继续前进发展。
麻省理工学院的Brynjolfsson和Andrew McAfee在他们的新书《第二次机器时代》中对上述过程提出质疑。他们认为当今的数字化变革的速度将威胁到所有工作者的饭碗。
如果技能调整要花费十年时间,情况会怎样?如果调整完后技术又再次变革了怎么办?一旦有人承认工人和组织需要花时间应对技术改进,那么很显然,加速技术改进就会拉大两者间的差距,增加了技术性失业的可能性。
这本书花了很大篇幅论证技术改进正在加速。根据摩尔定律,计算机的运算能力每过18个月就会翻一倍。
一些来自不同技术领域的皮尤问卷受访者也赞同该看法。正如技术咨询师和未来主义者Bryan Alexander所说的:
教育系统无法将自身改造成能帮助毕业生“与机器竞争”的体系。它既不及时,也无法形成规模。自学成才的人将表现出色,因为他们一直在与机器抗衡。但大多数人正在努力学习适应目前的经济模式,然而这种模式将发生根本性的变革。
当然还有人持相反观点,比如波士顿大学的James Bessen,他在近期的哈佛商业评论中就认为新技术最终会促进劳动力需求,即使对受教育程度不高的工人的需求也会上升。许多参与皮尤问卷的专家都表示赞同。互联网先驱,谷歌副总裁Vint Cerf简洁的说道:
“历史上看,技术所创造出的工作多于所消灭的工作,在这个问题上没什么可多想的。总有人要来制造和服务于这些先进设备的。”
经济学家Tyler Cowen把他对这一问题看法总结起来,发布在博客上:
比较优势定律还没有被推翻。机器会抢某些工种的饭碗,但是也会创造出新工作,而且整体产出更高。
但是和摩尔定律不同,比较优势定律(工人会逐渐从事他们最适合的工作)不是一成不变的。对于摩尔定律,Brynjolfsson和McAfee写道:
摩尔定律和热力学或者牛顿经典力学的物理定律极为不同。这些物理定律描述了宇宙是如何运转的,无论我们做什么,它们始终正确,不会受到影响。但是摩尔定律描述的是计算机产业中工程师和科学家的工作,是对他们工作的持续和成果所做的观察。
而比较优势定律不仅仅是观察——它是社会科学发现中最经久不衰的发现之一。它描述了经济体系在更广范围内的运作方式,但是这一定律可能被修改。如果新技术导致经济整体结构发生改变,那么比较优势定律会发生相应变化。
Brynjolfsson和McAfee在他们的书中着重说明了,为什么2004年基于比较优势定律所做的推测无法用来预言如今人力和机器之间的差 别。经济学家Frank Levy和Richard Murnane从理论上认为计算机将取代人类进行计算和基于规则的工作,而人类需要进行图像识别(比如驾驶)和沟通交流的工作。但如今,自动驾驶车辆已经 上路,而每台智能手机都已经搭载了语音识别功能。
和我们预测的不同,机器比人类更能胜任的事情会越来越多。那些我们觉得不会被机器代替的工作可能被取代,而我们担心被取代的工作可能反而更安全。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23