
成功进行数据中心迁移的四大步骤_数据分析师
即使是看似简单的数据中心迁移也可能会影响到企业运作,危害到关键的业务职能和商业关系。尽管如此,公司完全可以做到成功迁移数据中心。GreenHouseData的数据中心和规划部总监Art Salazar日前撰文分享了做好数据中心迁移的四大步骤,很多相关人士关注和学习。
以下为译文:
随着公司并购,内部部署设施不断老化,然而整合任务已经交待下来,这时就需要将数据中心设备迁移到新设施上去。
无论你想要两套设施放置一处,还是想为公司统一的数据中心选择最好的设备,或将IT设备和工作负载迁移到另一个地方都是个费时费力,并且还有可能耗钱的工作。这里,我们讨论一下有助于规划数据中心迁移的最优方法。
你可能购买了新设备,想要将其中一些项目或者全盘挪到新的地点去。以旧换新逐步淘汰旧设备的时刻非常关键。因为设备迁移是有风险的,如果有什么东西在途中损坏,就可能导致系统在新地点无法运行。外来设备或迁移期间的服务合同可以使迁移过程更加顺利。
回顾一下你与硬软件提供商的合同,是否有什么需要终止?它们是否可以随你一起移动位置?这里就可能会有位置或兼容性的限制。因为你是把一切打破后重装,这时你终于可以抛弃之前棘手的供应商,尝试一项新的服务,或者达成一个更好的交易结果。
你的设备可能还需要适应新的空间。是时间实现通道遏制或资料库系统规则?是否可以设计一个更高密度的环境?迁移过程允许你去探索效率问题,并且可以看看在你的工具设计中什么是有用的,什么是没有用的。
一旦你知道哪些设备是需要移动的,就需要决定是一次性移动所有设备还是分批转移。后者可以保证在新的位置运行数据中心中的一部分数据,并开始传输系统。如果想要一次性移动所有设备,外来设备或服务合同可以有效的避免宕机。当然,如果你的组织机构对宕机时间无所谓的话,这就不是问题了。
判断你是否有足够的资源来自己完成数据中心迁移,还是需要相关的服务帮助。能够提供这项服务的一般是专业的IT公司,他们专门从事数据中心工作,或者更加简单,他们本身就经常迁移数据中心,这时你只需要确保他们有足够的IT设备处理经验就可以了。
第二步:查看环境,列出设备清单
在把所有设备断电打包之前,查看系统日志和库存文件。确定是否所有的东西都在,并记录下一切新设备。检查使用率,从而查看正在进行的工作负载、定时备份以及当前的软件和应用。如果有服务合同,也需要多加注意:比如灾难恢复需要指向新的位置。有些项目可能需要特殊许可,才能在你切换到新设施的过程中同时或临时运行。
标注需要保留和正在运行设备。如果一台设备需要移动,查找记录保修信息和序列号,确保迁移过程不会导致保修失效。
接下来要建立或调整灾难恢复或备份。最好是有一个物理备份和一份云端备份。测试灾难恢复是为实际迁移做准备的重要环节。
第三步:集结人员,完成迁移
计划搬迁日期,避免在业务繁重的经营期干扰公司正常业务,比如即将到来的产品发布或内部项目。真正的迁移活动完全可以在下班时间完成。当然,在此之前你需要确保搬运人员可以进出所有相关必要的建筑。
将人员分为领导、搬运工和准备随时监测并迁移系统的技术团队。制作一个搬运当天的全面计划,内容包括搬运方式、搬运项目、备份计划、安装以及测试方案。想想每一个步骤可能涉及到的风险,并尽可能减少迁移对公司业务的影响。
有条理的打包和整理,标注一切信息:电缆盒上需要标明电缆的类型和长度,服务器应该注明他们需要什么模块以及/或者空间来简化重新安装。建议分层移动数据中心,或者你也可以以其他方式,比如首先移动非关键系统。
认真地处理旧设备和用品。如果可以的话,回收或卖掉仍然有用的电子产品。确保所有设备没有任何数据残留。清空技术或清除内存级的处理可能不足以彻底清除数据,存储消磁或物理破坏有时也是必要的。电池等危险设备则需要妥善处理。
在此过程中,安全是至关重要的。了解员工,追踪设备,并留意安全日志。这个时间人们很容易溜出你以往的视野范围,因为此时不是为了搬运东西打开了大门,就是防火墙处于关闭状态。根据需要带走或破坏安全密钥、文件和存取系统。
第四步:文档编制和测试
安装好一切后,开始测试。对照盘存清单检查新设施中的设备,以防任何错位。核对系统和应用程序列表,确保它们都运行正常或更换到位。
为了将来的文档编制完成项目审计审查,评估迁移成功。迁移是否按照日程安排进行?是否符合设计规范?问问团队的想法,并询问C级领导和其他部门负责人,数据中心迁移后是否满足了他们的需求。
数据中心迁移期间有许多需要跟踪记录的内容。这些步骤概括了移动设备和系统的方式、事物、地点、时间和原因。也许迁移过程中最关键的是记录整个过程,依照完善的计划执行,最后完成审核。这有助于你规划出过程的同时,留下书面记录,以便发现过程中的错误以及计量最终的成功。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08