京公网安备 11010802034615号
经营许可证编号:京B2-20210330
虽然现在各家商业银行都在谈转型发展,但从实践情况看,仍然存在转型战略雷同的问题,同样产生了严重的同质化竞争问题。商业银行要形成自身的特色,为客户提供个性化服务,就必须适应大数据和云计算时代的发展,从海量的数据中挖掘目标客户的各类金融需求,量身定做金融产品,针对不同客户展开个性化服务。
风险管理由控制内部向防范外部转变
风险管理一直是各商业银行的重点工作,普遍实现了“横向到边,纵向到底”的风险,重点从提高审批质效、加强资产监控、降低资本占用、专业队伍建设等方面入手,通过风险管理的“前移”、“下沉”,实行集中化全程管理,取得良好成效。但是,我们必须看到,在银行内部风险得到较好控制的同时,外部风险对商业银行的影响越来越大。
外部风险来源多样化。目前,银行业外部风险来源包括小贷公司、典当行、担保机构、民间融资、非法集资、影子银行,以及与银行业金融机构有各种业务合作关系的金融同业、工商企业等等。与银行业原来的信用风险、市场风险、操作风险等等传统风险比,外部风险事件呈现来源多样、形式复杂、防范困难的特点。而这些公司(领域)发生的风险事件,往往会传递至银行业,最终对银行的业务经营产生不良影响。
外部风险事件对银行业的影响越来越大。在云计算的条件下银行、企业、中介服务机构之间的联系愈发紧密,一时一地、一个单位的局部风险,可以迅速扩展为系统性、全面性风险。如“钱荒”的起因仅仅是一起小小的同业违约事件就是明证。此外,大数据时代的信息来源广、传播速度快,银行的负面舆情通过微信、微博被迅速传递,甚至被放大,银行声誉的风险增大。
电子银行网络安全面临挑战。近年来,网络安全事件频繁发生,银行业面临客户信息、账户信息和交易信息以及信息系统的安全挑战。一旦信息体系破坏和黑客侵入、网络中断等原因,导致信息资源的扭曲和传输障碍,将带来不可估量的损失。针对银行客户资金的网上欺诈、电话欺诈日益泛滥,呈现集中化、长期化、复杂化的特点。电子银行的交易安全和反欺诈工作必须引起高度关注。
因此,商业银行要加强外部风险管理工作。一是改善外部风险管理人力资源配备,提高监测手段,定期分析潜在的外部风险的主要来源及影响渠道。建立规范化的外部风险监测、处置流程、应对预案,形成全员识别、监测、发现、报告的机制,防范外部风险传染。二是形成风险防范合力。要加强客户安全教育,加强与金融监管部门、电信运营商、政府互联网安全管理部门等各方面的联系与合作,在全社会构筑起一张外部舆情监测、网络安全教育和有效惩治在线欺诈的防护网,广泛搜集、分析、加工各类风险信息,加强风险报告的前瞻性和时效性。三是在IT技术和信息安全的管理运营方面加强资金投入,购买最好的软件硬件,保证系统高效、安全地运转,防止类似光大证券“乌龙指”事件的发生。四是主动应对银行声誉风险,开展有效沟通,及时准确发布银行经营信息,科学疏导媒体、网络注意力和关注点。
科技保障由内部向社会化转变
网络银行的发展需要强化后台技术支持与维护做为保障。这些技术有两部分组成:一是硬件技术,主要指网络化服务所依赖的信息基础设施;二是软件技术,主要指数据挖掘技术、数据仓库技术和知识整合技术。现代管理学之父彼得·德鲁克早在1989年就曾指出:“10~15年之内,任何企业内只做后台支持而不创造营业额的工作都应该外包出去。”《哈佛商业评论》证实,外包模式是过去75年来企业最重要的管理概念。在大数据时代,科技保障将从二线走向一线,从后台走向前台,商业银行在加强信息保密和安全管理的基础上,通过科技保障的分级、分类管理,推动部分科技保障工作向社会化外包转变。
推动科技保障社会化可以节约成本。目前,服务外包已逐渐成为金融行业通用的解决方案。如今云计算各环节服务商提供的PaaS (Platform-as-a-service,平台即服务)和SaaS(Software-as-a-service,软件即服务)等服务,能够实现云外包更高层次、更自动化的外包,更有效地利用外部资源,分配管理资源并优化流程,避免重复建设和投资,改善商业银行运营成本,提高工作效率,推动发展模式向资源节约型、环境友好型进行转变。
推动科技保障社会化可以提高效率。在大数据时代,商业银行的IT系统要维持内部运营,保障安全运行,难以适应新形势下的海量计算要求。而IT企业能够在讯息收集、传递与交换分析等方面发挥更重要的作用。因此,商业银行可以通过云计算和社会化服务为银行发展提高坚实保障。
推动科技保障社会化可以解决人才困境。随着商业银行业务发展和转型加快,各银行科技部门应用软件的开发任务越来越重,银行研发人员增长速度却远远低于项目的增长速度,人才相对缺乏。另一方面,相对于专业软件公司,银行研发人员由于缺乏有效的学习载体,在技术掌握的深度和广度方面还存在一定的差距。因此,商业银行可以通过部分科技业务外包弥补人才的不足,获得急需的资源。同时,还可以借鉴国外银行成熟的做法,在竞争中发挥后发优势。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21