京公网安备 11010802034615号
经营许可证编号:京B2-20210330
虽然现在各家商业银行都在谈转型发展,但从实践情况看,仍然存在转型战略雷同的问题,同样产生了严重的同质化竞争问题。商业银行要形成自身的特色,为客户提供个性化服务,就必须适应大数据和云计算时代的发展,从海量的数据中挖掘目标客户的各类金融需求,量身定做金融产品,针对不同客户展开个性化服务。
风险管理由控制内部向防范外部转变
风险管理一直是各商业银行的重点工作,普遍实现了“横向到边,纵向到底”的风险,重点从提高审批质效、加强资产监控、降低资本占用、专业队伍建设等方面入手,通过风险管理的“前移”、“下沉”,实行集中化全程管理,取得良好成效。但是,我们必须看到,在银行内部风险得到较好控制的同时,外部风险对商业银行的影响越来越大。
外部风险来源多样化。目前,银行业外部风险来源包括小贷公司、典当行、担保机构、民间融资、非法集资、影子银行,以及与银行业金融机构有各种业务合作关系的金融同业、工商企业等等。与银行业原来的信用风险、市场风险、操作风险等等传统风险比,外部风险事件呈现来源多样、形式复杂、防范困难的特点。而这些公司(领域)发生的风险事件,往往会传递至银行业,最终对银行的业务经营产生不良影响。
外部风险事件对银行业的影响越来越大。在云计算的条件下银行、企业、中介服务机构之间的联系愈发紧密,一时一地、一个单位的局部风险,可以迅速扩展为系统性、全面性风险。如“钱荒”的起因仅仅是一起小小的同业违约事件就是明证。此外,大数据时代的信息来源广、传播速度快,银行的负面舆情通过微信、微博被迅速传递,甚至被放大,银行声誉的风险增大。
电子银行网络安全面临挑战。近年来,网络安全事件频繁发生,银行业面临客户信息、账户信息和交易信息以及信息系统的安全挑战。一旦信息体系破坏和黑客侵入、网络中断等原因,导致信息资源的扭曲和传输障碍,将带来不可估量的损失。针对银行客户资金的网上欺诈、电话欺诈日益泛滥,呈现集中化、长期化、复杂化的特点。电子银行的交易安全和反欺诈工作必须引起高度关注。
因此,商业银行要加强外部风险管理工作。一是改善外部风险管理人力资源配备,提高监测手段,定期分析潜在的外部风险的主要来源及影响渠道。建立规范化的外部风险监测、处置流程、应对预案,形成全员识别、监测、发现、报告的机制,防范外部风险传染。二是形成风险防范合力。要加强客户安全教育,加强与金融监管部门、电信运营商、政府互联网安全管理部门等各方面的联系与合作,在全社会构筑起一张外部舆情监测、网络安全教育和有效惩治在线欺诈的防护网,广泛搜集、分析、加工各类风险信息,加强风险报告的前瞻性和时效性。三是在IT技术和信息安全的管理运营方面加强资金投入,购买最好的软件硬件,保证系统高效、安全地运转,防止类似光大证券“乌龙指”事件的发生。四是主动应对银行声誉风险,开展有效沟通,及时准确发布银行经营信息,科学疏导媒体、网络注意力和关注点。
科技保障由内部向社会化转变
网络银行的发展需要强化后台技术支持与维护做为保障。这些技术有两部分组成:一是硬件技术,主要指网络化服务所依赖的信息基础设施;二是软件技术,主要指数据挖掘技术、数据仓库技术和知识整合技术。现代管理学之父彼得·德鲁克早在1989年就曾指出:“10~15年之内,任何企业内只做后台支持而不创造营业额的工作都应该外包出去。”《哈佛商业评论》证实,外包模式是过去75年来企业最重要的管理概念。在大数据时代,科技保障将从二线走向一线,从后台走向前台,商业银行在加强信息保密和安全管理的基础上,通过科技保障的分级、分类管理,推动部分科技保障工作向社会化外包转变。
推动科技保障社会化可以节约成本。目前,服务外包已逐渐成为金融行业通用的解决方案。如今云计算各环节服务商提供的PaaS (Platform-as-a-service,平台即服务)和SaaS(Software-as-a-service,软件即服务)等服务,能够实现云外包更高层次、更自动化的外包,更有效地利用外部资源,分配管理资源并优化流程,避免重复建设和投资,改善商业银行运营成本,提高工作效率,推动发展模式向资源节约型、环境友好型进行转变。
推动科技保障社会化可以提高效率。在大数据时代,商业银行的IT系统要维持内部运营,保障安全运行,难以适应新形势下的海量计算要求。而IT企业能够在讯息收集、传递与交换分析等方面发挥更重要的作用。因此,商业银行可以通过云计算和社会化服务为银行发展提高坚实保障。
推动科技保障社会化可以解决人才困境。随着商业银行业务发展和转型加快,各银行科技部门应用软件的开发任务越来越重,银行研发人员增长速度却远远低于项目的增长速度,人才相对缺乏。另一方面,相对于专业软件公司,银行研发人员由于缺乏有效的学习载体,在技术掌握的深度和广度方面还存在一定的差距。因此,商业银行可以通过部分科技业务外包弥补人才的不足,获得急需的资源。同时,还可以借鉴国外银行成熟的做法,在竞争中发挥后发优势。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01