京公网安备 11010802034615号
经营许可证编号:京B2-20210330
商业模式由垄断竞争向合作共赢转变
在将来,银行自身一家单打独斗、包打天下的做法将远远不能适应竞争的需要。就目前来看,银行与第三方机构合作类业务规模快速增长,合作模式表现多样。
银行同业合作更加深入。除了原来常有的同业拆借、银团贷款等等合作外,现在商业银行开始在支付结算、科技服务、财富管理等方面加强业务合作。2013年4月24日,中国民生银行、包商银行、哈尔滨银行等33家中小金融机构共同组建“亚洲金融合作联盟”区域性金融合作组织,兴业银行武汉分行当前与省内外11家银行类金融机构开展银银平台合作。
金融同业合作蓬勃发展。面对企业客户日益多元化的金融需求,辖内商业银行加强与信托公司、证券公司、保险公司合作,将银行业务与信托、证券、保险公司等业务相互渗透与整合,通过客户资源的整合与销售渠道的共享,提供创新产品服务,以一体化的经营形式来满足客户金融服务需求。
跨业合作方兴未艾。在新形势下,物流、资金流、信息流“三流合一”的非金融企业通过精准定位各类客户的偏好,向其推送包括金融产品在内的各种消费品和服务,这种点对点的精准服务一方面可以降低银行的服务成本。另一方面,有针对性的服务方案和产品将使银行服务更加优质高效。同时,为了满足客户综合金融服务的需要,商业银行的产品必须向多元化、综合性方向拓展,需要商业银行与其他金融机构形成更加紧密的合作机制,开辟更广泛的业务合作。
业务营销由分散向集中转变
从调查情况看,湖北省的银行业金融机构在营销方面各具特色。除了传统的“以老带新”营销、组合营销、分层营销、集群营销、“扫街”营销以外,还有部分适应大数据时代发展的新的营销模式和手段。
营销方式远程化。近几年,部分商业银行远程银行中心(电话银行中心、呼叫中心)改变以往以受理咨询、简单交易为主的定位,延伸服务范围,努力打造远程客户服务体系,形成对传统渠道的有益补充。具体来说包括:远程客户拓展,在不断完善客户服务跟踪回访的同时,对潜力客户、流失预警客户开展针对性的挖掘与拦截;远程业务营销,借助商业银行领先的数据库营销技术与客户分类模型,远程银行中心与分支机构配合,提炼整理基于客户需求的营销模型,全方位、全天候满足客户财富管理需求;远程贷款发放,充分发挥远程银行“全天候、快反应”特点,与银行分支机构客户经理密切联动,打造“客服电话+客户经理”的贷款新模式。
营销终端移动化。在合适的时间,通过合适渠道,把合适的营销信息投送给每个顾客。随着互联网及移动互联网深入生活的每个领域,互联网金融快速发展,商业银行在网上银行的基础上迅速推出多款移动金融产品,并开展网上营销、移动营销。
营销目标名单化。名单制营销使得银行的客户开发工作更有的放矢,提高了营销的精准性。一是通过银行业务数据分析,挖掘潜在客户,指导客户经理开展针对性营销。二是辖内商业银行各省级分行积极拓展与省政府相关部门,如科技厅、金融办、经信委、中小企业局、工商联等的合作,取得推荐企业名单,实行名单制营销。
营销指导专业化。商业银行总行或省级分行加强宏观经济分析及板块研究,把握机遇,坚持计划先行、方案先行。通过深化行业客户细分,研究区域经济热点,强化专项产品推广,推进行业营销指导,引导对公业务有序发展、转型发展。
营销力量集中化。首先是商业银行总行或一级分行营销部门需要通过数据集中和云计算对潜在客户进行筛选,准确分析客户需求。在对银行内部数据加强分析利用的同时,也可以积极探索通过互联网加强客户获取,如与淘宝、京东、苏宁、支付宝等合作批量获取客户,通过微博、微信获取客户等。其次是总分行的中后台业务部门要围绕数据中心,优化分析模型,抓住目标客户的关键业务与财务活动开展分析研究,对每个客户形成业务和服务一揽子解决方案。最后,才是基层银行网点客户经理根据总分行的一揽子解决方案,“按图索骥”向客户营销全面的金融解决方案,提升客户满意度。依据对客户数据挖掘和商业智能技术,搭建数字营销平台,通过前中后台的紧密合作实现高精准、高效率和低成本的新型营销。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28