京公网安备 11010802034615号
经营许可证编号:京B2-20210330
艺术品拍卖市场与大数据转型_数据分析师
如今,大数据分析正在促成一个新的产业链条:受众获得个性化耽商家风险成本的降低、全新的数据中间商的崛起……而传统的商业模式在大数据时代也面临着新的挑战与转型,互联网金融对传统金融业的挑战即可见一斑。科技文化产业中较为明显的是基于数据以及掌控数据技术分析的BAT互联网三巨头(百度、阿里巴巴、腾讯),而我们看到即使是最为传统的模式,譬如报业也在试图占据大数据的先机。有研究者预言,传统行业最终都会转变为大数据行业,无论是金融服务业、医药行业还是制造业。如果从传统的数据分析转向大数据思维,一些目前面临困境的行业,例如饱受赝品与假拍困扰的中国艺术品拍卖市场,也许会有某些新变化。
被誉为“大数据先驱”的迈尔·舍恩伯格在《大数据时代》一书中总结了大数据分析的特点:更多、更杂、更好。亦即:采用全体数据,而非部分采样的数据;强调数据的完整性与混杂性,而不局限于小数据的精确性;着重于“是什么”的相关关系预测分析,而不探寻“为什么”的因果关系。迈尔·舍恩伯格的理论正是面对了数字信息化时代天量数据充斥的多元性、混杂性、共生性等多重特点,试图使数据的更多可能性发挥出来。
目前,全球艺术市场弱市前行,中国艺术市场回归调整促使拍卖公司在大机构资本退潮后转向更为稳健的营销策略。无论从拍卖行近年“培育藏家、学术推广”的营销策划还是两季拍卖之外私人洽购模式的兴起,针对个人或者机构收藏、投资的个性化定制转型日趋明显,大数据分析显然是题中之义。雅昌艺术市场监测中心AMMA出品的《中国艺术品拍卖市场调查报告2014春》(以下简称《报告》)所持的观点也与此不谋而合:“细化数据成为中国艺术品市场的总趋势,无论是从专场的策划、藏家的定位、拍品的征集、推广宣传等方面都体现了这一新变化。”一方面,细化数据这一趋势其实意味着拍卖行对各个细分市场以及客户的消费模式进行有针对性的诉求;另一方面,中国拍卖行业发展20多年以来积累了大量的数据或者说至少可以收集到大量数据,这应该是艺术市场中其他主体所不具备的资源优势。大数据分析对于拍卖行营销策略的转型,乃至是促进整个拍卖行业的良性发展都有重要意义。
目前,鉴于拍卖行业数据混杂,假拍、赝品、结算率低等问题都使得数据的质量参差不齐,机构研究者往往需要进行大量的数据整理、清洗、剔除工作,从而试图获得更为精确、更具市场代表性的样本数据。然而样本数据的取舍过程中一旦存在任何采样偏差,分析结果就会相去甚远,而且小数据的样本分析往往只能对预设的问题做出判断,而不具有延展性,即发现计划之外的问题以及用于其他用途目的。恰好,这些问题又是拍卖行业数据的复杂性所不能规避的。大数据分析的数据规模是所有纷繁数据,允许其中的混杂和错误,更有可能促使研究接近事实和真相本身。基于可能的相关性、而非绝对的因果性分析,也可能使得研究者发现以前所不能发现的关系。另外,在相关性分析的基础上进行预测也是大数据分析的核心与魅力之处。这种相关性是交互的动态,而非单一的静态,它基于关系的预测,甚至无需切入对于因果关系的复杂分析。这一方面有利于监管部门对市场的运行态势做出判断,及时做出风险预警或者事先采取相关的监管措施;另一方面,相关性也是企业进心基础:从客户现有的行为模式与市场态势,预测未来取向。鉴于目前的市场监管滞后、市场信息不透明等种种症结,这种大数据分析思维可能会对整个行业产生重大影响。
对于掌握着数据的拍卖企业来说,在这样的数据创新思维之下,过往以单一方式收集的原始数据就可能成为具有多种用途的可扩展数据,其潜在价值不可小觑。而除了大数据思维与数据的掌握者之外,掌握数据分析技术的中间商如果能先人一步挖掘数据的潜在价值也是商机无限,这也可能促使目前出路不明的艺术品电商从单纯的电商到复合的数据中间商转变。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07