
大数据改变体育行业的10种方式_数据分析师
无论我们谈论足球、赛车还是帆船的体育运动,捕获、存储和分析数据方面的进步正在影响体育行业的方方面面。数据使运动员能够更好、更有效地训练,并可以让团队根据他们所看到的情况来调整其决策。这也改变了广播公司制作体育赛事的方式,以及体育团队和广播公司与球迷的互动方式。下面让我们来看看大数据如何改变体育行业。
可穿戴技术和生物识别技术
比赛日的分析数据不单是视频,传感器也可以提供最新的数据。例如,NFL球员配备的可穿戴传感器可以获取数据来帮助提高球场经验,而培训师也已使用可穿戴设备来监控运动员的表现,并更好地设计培训计划。虽然传感器和生物监控设备现在还不完善,但现在的目标是利用直播比赛的数据以供未来使用。例如,橄榄球头盔中的运动传感器可以确定球员可能在什么时候遭受了头部撞期,这些数据可以用于更好地防止未来的伤害。
动作捕捉
动作捕捉技术已经存在了一段时间,而现在该技术获得了新的关注,它可以用于追踪球员的运动数据,以便在比赛后制作模拟比赛。
“最终,这些数据可以根据球员在比赛中的表现生成视频,”帮助更多职业体育组织进行数据存储和大数据解决方案的设计。NetApp公司Jason Danielson表示:“这些数据可能比视频本身更有价值。”
广播体育节目制作
数据和分析早已是广播体育制作的核心,为评论员提供了相关的实时数据(回放、比赛数据等),让观众更好地了解赛事。
“这包括冰球追踪可以让球员更加容易取胜,或者使用计算机图形技术来帮助更好地说明美洲杯的活动,”Danielson表示,“在某种程度上,不同传感器发送的数据可以引入到视频广播,让观众获取更多信息。”
广播和数字发行
大数据不仅在广播制作中发挥越来越重要的作用,同时在广播和数字发行也是。对于内容多平台发布以及在广播中使用社交媒体和消费者产生的内容,会使用指标来确定重点内容以及如何收取广告费用。这些数据对于大型体育赛事特别有用,例如2014年世界杯,在192个国家和地区播出,吸引了32亿观众。
提高广告收入
广播电台也在利用实时流媒体、社交媒体和消费者产生的数据来更深入地了解其观众。
“你谈论消息发布就肯定要谈广告收入,无论是30秒的电视广告或是社交网站的消息框,”Danielson表示,“他们关心的是有针对性的广告,如果他们知道谁会来到网站查看内容,他们就可以将这些卖给广告客户。如果他们可以提供数据说明谁正在查看或跟帖,他们就可以收取更高的费用,这可以帮助他们最大限度地提高收入。”
粉丝参与
随着广播覆盖率大幅提高,移动技术为粉丝提供了更多数据共享功能,从发布其体验到创建自己的视频。在日前举行的2014年世界杯,观众带宽达到12.6TB,73531位决赛观众分享了一分钟的高清视频。企业正在利用这一趋势通过提供应用程序和社交中心来提高粉丝参与度。有些企业甚至利用实时社交分析来对直播数据流作出更好的决策。
环法自行车比赛
环法自行车赛是一个为期三周的自行车比赛,狂热的追随者散布在2000英里的农村公路。广播机构无法在每个地方安装摄像头,而新技术可以利用粉丝用其移动设备拍摄的照片和视频来提供更好的赛事追踪。
“没有网络可以在整个比赛中都部署摄像头,”Danielson表示,“但现在我们有系统来让粉丝上传内容到广播公司的网站。这种技术还很新,且具有挑战性。这涉及1000部手机拍摄的照片,而且如何快速上传到广播中心并转码成广播可以处理的格式,这也是一个问题。”
高清世界杯
四年前,在上届世界杯,4K视频(或超高清)只是小范围实验。而在今年的巴西世界杯,这已经成为现实,4K视频帧具有HD帧像素的四倍,这意味着需要四倍的数据存储、加载和处理。
“4K已经存在了很长一段时间,只是还没有应用到电视,”Danielson表示,“但现在我们已经开始看到它在电视中的应用,人们开始谈论体育赛事是关键的应用。”
F1方程式赛车
F1方程式赛车是世界上最流行的运动之一,也是最受数据驱动的运动之一。汽车团队依靠实时信息对汽车作出改进,以及赛车策略。例如,Sauber F1团队的汽车可能有100个传感器会产生20MB到30MB的数据,包括轮胎、引擎、温度和燃料使用的信息。然后团队利用这些数据做出即时决定。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23