京公网安备 11010802034615号
经营许可证编号:京B2-20210330
畅谈大数据:小微商户也能成为大力神_数据分析师
根据IDC和EMC发布的报告,到2020年地球上每个人的数据容储量将达到5TB。这令人感到恐怖的数据量,使得很多人一谈到大数据就会产生一种无力感。如同坐拥了一座巨大无比的金山,却每天只能用手慢慢地挖,慢慢地开采,像愚公移山一般,每天24小时不停歇,也不过开采这金山的九牛一毛。
最近在美国观看YOUTUBE视频时候弹出最多的广告是一家叫做Square的移动支付公司。Square公司推出的移动读卡器能够在配合智能手机与移动网络的情况下进行刷卡消费。这种突破了时间与空间局限的支付产品,大大地降低了刷卡消费支付的技术门槛和硬件需求,使得小微商户支持刷卡消费变成了现实。 广告中一位顾客在美发完成以后,愉快地掏出信用卡,在插有Square移动读卡器的ipad上付账。店长满面笑容。而中国公司迅速的跟进使得这种笑容从美国一直绽开到了中国。拉卡拉考拉手机支付从外观到功能与Square都极其相似。
试想一下,有一天你到菜市场买菜,掏钱的时候,蔬菜摊的王大姐从凳子上拿起正在充电的手机,面带微笑地对你说,“老妹/老弟你可以用信用卡付钱的。”或是你下班经过地铁站,想要在路边摊买一碗麻辣烫吃吃,付钱的时候,推车的小伙子掏出手机对你说,“大哥/美女你可以用信用卡付钱的。”这样的一个覆盖面,根据The long tail(长尾理论),在中国这么庞大的市场所创造的资金流是非常可怕的。而移动支付所带来的利益远不止这庞大的资金链,实际上,大量的支付信息所提供给公司的是大量宝贵的数据。当有一天,我们能够监控每一个用户的每一个小微的消费行为,那么我们对于大数据的收集将会进入另一个层次。本质上来讲,这些每日琐碎的小微消费正是组成我们每天生活的主体,而分析通过这些小微消费所得到的大数据,恰能给我们带来最精准的消费行为预测。
我第一次接触Square是在我本科学校宾州州立大学附近的一家叫Uncle Chan(陈叔叔)的中餐店。陈叔叔的外卖包括自取均是使用Square连接ipad进行刷卡支付。我从小就是素食主义者,每次点餐都要到店里面专门跟他们嘱咐一下。因为美国中餐馆的素菜种类十分稀少,我养成了一个几乎每家中餐厅都只吃同一道菜的习惯。一来二去,这家中餐店的老板一见到我就自动帮我下一个麻婆豆腐配炒饭和汽水的单。这种行为经常出现在我们的生活当中,但凡我们常去的服务场所,不论是餐馆、理发店还是烟酒店,都会不自觉地记录我们的行为,从而对我们进行消费行为的判断。实际上,这种现象正是大数据分析的最基本表现形式。假设一家公司能够同时拥有我所有的消费行为数据,相当于我每天去的每一家店的老板都是同一个人,那么这家公司自然能够轻松地预测出我日常的消费行为。而如果每天你刚要下地铁的时候,一家路边麻辣烫对你的手机进行广告投放,这种广告投放的力度和效果是巨大的。随着至尊宝、手机pos、阳城、拉卡拉等公司的推广,这种数据的收集是可能的。
移动支付在中国的特色功能给我们带来了更大的数据量。手机充值、游戏充值、公益捐款、彩票购买,无数独特的功能给大数据的收集提供了便利。如同通过分析特殊材料的消耗量,能够判断出战斗机产量一样,我们通过分析用户手机充费的频率及金额,也能够得到一些非常有用的信息。
中国这个庞大的国家,能够给我提供巨大无比的数据量。
大数据从开始出现时的以TB为单位,现在已经驶入了以EB为单位的时代。根据IDC和EMC发布的报告,到2020年地球上每个人的数据容储量将达到5TB。这令人感到恐怖的数据量,使得很多人一谈到大数据就会产生一种无力感。如同坐拥了一座巨大无比的金山,却每天只能用手慢慢地挖,慢慢地开采,如同愚公移山一般,每天24小时不停歇,也不过开采这金山的九牛一毛。我在做营销项目的过程中接触过一些美国的大数据分析公司。这些分析公司都在谈他们能够为特定的企业提供什么样的一种服务。可这些已知的、能够被提供的服务所利用上的大数据,可能只是这个金山上长的那些树而已,远非金子本身。未来科技能够做到的,是分析每个用户的每个细微的行为。心跳、呼吸、眨眼次数、血压、说话的音量、说话的速度,一切的一切都能够被收集。传说中的须弥山,由金、银、琉璃、玻瓈四宝构成,高110万千米。由这些大数据所构成的金山,恐怕比须弥山只大不小。这无量无边的数据所组成的金山,凭借我们现有的分析和处理能力,和愚公移山无二无别。
那么,面对这无量无边的大数据,我们如何应对?在我看来,正如同故事里的愚公,无论他怎样努力,大山终究无法被动摇。但是天帝派来的夸娥氏的儿子们,轻松就将大山抬走。用来分析数据的电脑,不论怎样更新换代,不论拥有再高的运算速度,终究只是工具。如同给猴子一个算盘,不论它怎么挥舞都始终偏离正确的使用方式。我们已经拥有了超越我们驾驭能力的工具,也拥有了超越我们驾驭范围的金山。那么下一步,就是要我们自己从愚公,转变成大力神的儿子。
我在上一篇文章里提到过大数据的未来,就是用大数据来探究宇宙人生的规律。在探究这个真相的过程中,唯有提升我们的认知,提升我们的境界,提高我们的智慧,才有可能从大数据中提炼出真理。唯有透过大数据的现象,看到商业规律的本质,才能够驾驭大数据并有的放矢。从前,布鲁诺支持日心说,挑战了教会的地心说,虽然超前地更接近于真相,却难逃被烧死的命运。若我们不去提高自己的认知,不去提升自己的境界,不去提高自己的智慧,我们也必将被湮没在这无量无边的大数据之中。即便坐拥着金山,也不知如何去挖掘。我们依然贫穷。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07