
一份大数据应用分析报告究竟值多少钱_数据分析师
不久前,有朋友希望了解类似Google眼镜在国内市场前景,了解市场有哪些产品、市场份额、产品市场策略,以及市场潜力,据此来判断是否引入产品到中国市场。对此,以往做法是聘请专业调研机构进行市场调查,所需要的费用依据采样数量、范围和难度有所不同,从几万、几十万到上百万元不等。
应该说不是每个企业都有实力进行这样的调研的,对此,大数据应用会派上用场吗?答案是毫无疑问,互联网海量数据中,肯定潜藏着答案。如今的问题是,怎样才能够获取到?
依我看来,大数据分析的第一步就是确定分析数据的范畴。对此,前不久一个从事大数据分析服务的厂商表示,有些用户对大数据的需求还是很明确的,以电信运营商为例,他们希望分析几年来积累的客服电话,并将其用语音识别技术转化为文本;还有一些用户,对特定领域信息有兴趣,需求明确。无论是用户数据,还是网上信息,用户需求还是非常清楚的。
在明确需求之后,用户愿意为大数据分析支付多少钱呢?对此,该大数据服务商明显很无奈。他表示,在国外,商业环境、商业模式以及诚信度很高,市场相对比较成熟,用户乐于为此付费。与之相比,国内市场还很不成熟。
所谓不成熟,我想也不排除用户方面的问题,有些用户就是跟风,大数据代表趋势和方向,具有重要的战略价值,因此用户反而忽略了大数据带来的实际价值,用户要的只是“标签”,在这种情况下,用户给多给少给谁,与大数据的商品价值就没有多少关系了。这种非理性,会导致市场良莠不齐,鱼龙混杂,最终阻碍技术的进步和发展。
抛弃这些非理性的因素,判断大数据的价值也是一件非常困难的事情。对此,我认为最难的问题在于大数据价值分析的量化。对于一份大数据分析报告,很难说它值多少钱,如果不能够量化,业务模式将很难持续。
如何对分析报告进行量化?在我看来,一个成熟的大数据应用,不是用一个工具对大数据进行分析就可以得出结论。大数据应用是一个将数据转化为信息,并上升为知识的过程。这个过程不可能完全由机器来完成,机器可能提供线索,但判断还需要人来完成。
所以对于大数据知识的挖掘是一个循环往复、逐步加深的过程,在这个过程中,需要不断进行思想碰撞,多角度、多途径来验证所获得的结论。这不是一个简单的过程。因此,对于用户而言,大数据应用不是一份分析报告这么简单,它涉及到数据来源、数据规模、实时性以及分析方法、经验等多种复杂因素,同样是一份报告,涉及因素不同,其价值迥异。因此,大数据是一个战略性应用,需要用户明确目标、规划,需要必要的资金保证。
从大数据服务商的角度,也要充分展示自己的价值,帮助用户制定大数据分析的目标和步骤,并提供服务战略所需要的数据。如今,国内的一些大数据服务商,还在依靠卖软件Licence生存,这无异于饮鸩止渴,只会导致市场更加混乱。
“很多小厂商用我们的软件,进行一些简单地分析,就号称提供大数据服务,他们可以把价格压得很低,对此,我们也很无奈。”某大数据厂商说。
在我看来,如果Google、百度能够开放软件,对特定行业数据进行分析,那么,就不需要什么大数据分析,直接检索就会有些结论。但这不是真正的大数据。
所以不用感叹市场不成熟,大数据服务商终究要体现自身的价值。当然,对于跟风的用户,那些追求所谓政绩用户,面对市场的非理性,我也很无奈,除了等待,也没有什么太好的办法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23