
多年来,遗传学家Helene Royo使用商业软件分析自己的研究数据。她将DNA从发育中的小鼠精子里提取出来,送去分析,然后利用名为GeneSpring的软件研究结论。“作为一个科学家,我希望能理解自己做的任何东西。”她说,“但这类分析不允许这样:我只是按个按钮,并得到答案。”但随着Royo比较不同染色体基因活性的研究日益复杂,她意识到商业工具已无法满足她的数据处理需求。
之后,Royo有了一个选择:将基因序列发给专家或自己学着分析数据。她决定冒险一试,并开始学习如何用免费的开源软件包R解析数据。它帮助Royo所在的瑞士巴塞尔弗雷德里希米歇尔研究所生物医学研究中心在软件上运行了常规课程。但她还沿行着一个更宽广的趋势:对于那些尝试放弃使用商业软件的学者而言,R是可供选择的数据分析工具。
除了免费外,R受欢迎的部分原因是它对不同使用者呈现不同面貌。首先,它是一种编程语言,要求经由命令行输入,这似乎禁止非编码者使用。但初学者能够调用预先设置的软件包,其中包含了已经做好的统计分析和数据可视化命令。“R非常简单,它能为我做任何事。”Royo说。
而这也是R的开发者在上世纪90年代研发该软件包的初衷。新西兰奥克兰大学统计学家Ross Ihaka和Robert Gentleman对计算机十分感兴趣,但是缺乏需要的实际软件。因此,他们开发了一种能执行自己需要的数据分析的编程语言。R正是取自开发者名字的首字母。
在互联网兴起之初,R迅速吸引了全世界需要统计软件和乐于贡献点子的科学家的兴趣。Gentleman和Ihaka决定公开他们的源代码,而编码专家迅速开发出针对特定领域的预编程程序和命令。“我能写出天文学领域的人适合使用的软件。但如果是天文学者为同领域的其他人写软件会更好。”Gentleman说。
荷兰皇家海洋研究所海洋学家Karline Soetaert也同意该观点。2008年,她计划检查斯凯尔特河河口附近浮游生物的健康情况。Soetaert想要使用沿河收集的数据计算浮游动物的死亡速度,但R无法做到。为了解决该问题,她与两位生态学家开发了deSolve——写入R的首个程序包,以解决微分方程。她提到:“其他软件也能计算,但却昂贵且是闭源的。”现在,流行病学家也使用deSolve模拟传染性疾病,基因学家用它研究基因调控网络,药物开发者则将其用于药物代谢动力学。
到2003年,R首次发布10年之后,科学家已经开发出超过200个程序包,而且有关“R项目”的首个引用出现。现在,已经出现了针对各种专业的近6000个数据包。它们帮助科学家比较人类和尼安德特人基因组、建模人口增长、预言股票价格等。专家能使用R绘制手稿,他们可以嵌入源代码,通过knitr编译直接生成一份报告。2013年,在爱思唯尔的斯高帕斯数据库索引的科学文章里,有近1%援引了R或其中一个数据包,而在农业和环境科学领域,这个比例更高。
对于许多使用者而言,R作为统计学软件的质量十分引人注目。美国田纳西州大学统计学家Robert Muenchen表示,该工具与SPSS和SAS等商业数据包一样。在过去10年中,R已经赶上并超过了市场领导者。“大概在2014年夏天,R已经变成了使用量首屈一指的统计学程序包。”他说。
在基因组学和分子生物学领域,一个名为Bioconductor的软件项目紧随R之后。它能帮科学家处理和比较庞大的基因序列,利用基因表达综合数据库等数据库查询结果以及上传数据到数据库。它包含近1000个程序包,其中一些能帮助将新一代测序实验得出的数百万DNA片段与有注解的基因相连。
随着对R的钻研,Royo接受了密集训练:在弗雷德里希米歇尔研究所生物信息学部负责人Michael Stadler的监督下,她花费了约半年时间研究R和Bioconductor。伯克利数据科学研究所生态学家Karthik Ram表示,现在有足够的机会去学习R。Ram主动帮助科学家学习和开发R。他和同事免费提供培训课程,不需要任何现有编程技巧,并能针对科学家的特殊问题。
加州圣地亚哥州立大学生态学家Megan Jennings接受了相关培训。她追踪山猫、美洲狮和其他野生动物,以理解它们的行为。最终,36台相机在1年时间里拍摄了40多万张时间标记照片。最初,她手动选择出想要的照片,并将它们输入一个名为PRESENCE的黑匣子程序。但在Ram的帮助下,她写出了一个能够读出标记照片的R程序包,并对照片进行精简,然后将自定义数据子合集发送到R预先存在的模型程序包中。“之前我要动手挑拣1个小时的照片,而现在只需要做5分钟。”Jennings说。
另外,R的一个最伟大之处就是它的在线服务。Muenchen表示,有关R的讨论区远超针对其他商业统计软件的在线提问。“这种情况十分常见,一个人发布了一个问题,然后其他人在半小时内开发出程序包来回答。”他说。这样的快速反应对基础研究领域的科学家非常重要。“我几乎能在线找到任何问题的答案。” Royo说。
但与其他技能一样,学习R并非一夕之功。但Jennings表示,它值得学习。“将它作为一种投入:为了之后的节省时间和构建解决多种问题的技巧。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18