京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据与大科学_数据分析师
最近去武汉参加第八届全国测试学术会议,包括硬件测试、软件测试,碰到许多老朋友和新朋友,大家议论了许多。我和大家交流了在CACM上看到的Big data meets big science,也颇有感触。
在斯坦福的国家加速器实验室,大气观测望远镜到2020年要安装一个32亿像素(3.2GP)的照相机,10年以后每晚每隔15秒摄取极高分辨率的天空图像。该系统需要存储10亿亿字节(100PB)的数据,相当于2000万个DVD。当然,通过这个照相机获得的原始数据比这还要多得多。这个照相机的视野里面有400亿~500亿天文目标。长久存储这些像素几乎是不可能的,只能实时处理和提取关键数据。大型科学仪器,从大型强子碰撞型加速装置到高级光束处理器和分子成像工具产生大量数据,是目前的并行超级计算机所无法处理的。
可目前看到的现实是:1.摩尔定律已经失效,因为晶体管尺寸已经达到物理极限。2.超级计算机已经不能再这样用CPU堆下去了。成千上万,甚至几十万的CPU、GPU堆起来的超级计算机,耗电惊人,而并行计算实际上很难实现。大部分时间,CPU闲着,而Memory忙得要命。3.冯诺伊曼计算机体系结构非改不可了。存储计算的方式已经不适用新情况。对于许多应用来说,实际的瓶颈不是处理时间,而是需要不断地存取存储器。
一个明显的事实是,虽然我国的天河超级计算机几次排名世界第一,但美国最近基本不参与这个排名的竞争,排第几也不关心了。
对于大数据的问题,怎么解决?科学家们主要采取三个途径:一个是从观测开始各环节设法减小数据集;一个是从私人企业学习基于云计算的经验;另一个是探索新技术,譬如量子计算。
量子计算对于破解密码、因子分解、量子物理模拟可能很有效,但是,对组合优化、航空调度、绝热算法是否有效,还很难说。所以,大科学产生大数据,大数据技术要靠大科学。物理学、光学、生物学、计算科学一起来,研究这些数据的收集、分发、存储、处理。不能单靠计算机。我曾撰文说:大数据技术靠计算机,大数据分析要靠各领域的专家,现在看来,大数据技术也要靠大科学的专家。
在这样一个创新的关键时刻,中国人应该有所作为。不要天天想着发 SCI、投CNS、提职称、发牢骚,想想这些大问题吧!但是,我跟与会的朋友们说,不管计算机怎么变,容错计算是一个永恒的主题,在量子计算中,人们也在密切关注容错计算。高端容错计算机的实用价值就更不用说了,大家都懂得。
我想补充几句话:微纳电子产业现在还很兴旺,市场仍然很大;超级计算机,特别是其应用还是要搞,从科学研究的角度讲要有些前瞻性
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07