京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据的下一个前沿是什么_数据分析师
MGI(麦肯锡全球研究院)和麦肯锡商业技术办公室的报告显示,当今世界的信息量已呈爆炸式增长态势,大型分析数据集即所谓的大数据,将成为引发新一轮生产力增长、创新及竞争的关键基础之一。
多媒体的崛起,社交媒体及物联网所捕捉到的、与日俱增的信息量,将会使数据在可预见的未来呈指数性增长。
麦肯锡研究了五大领域的大数据美国医疗保健、欧洲公共部门、美国零售业、美国制造业及全球个人位置数据。对于每个领域,大数据都能创造价值。
例如,如果充分利用大数据技术,零售商就能使其营业利润率提高约60%以上。大数据在公共领域也有较大潜力可挖掘,如果美国医疗保健行业能够创造性地、有效地利用大数据以提升其效率及质量,那么每年就能创造出3000多亿美元的产值。欧洲的发达国家使用大数据后,政府管理人员仅在提升操作效率方面,就节省了至少约1000亿欧元(约合1490亿美元)的成本,这还不包括使用大数据减少舞弊和错误等。
此外,利用个人位置数据所提供服务的用户还可创造6000亿美元的消费者剩余。该研究提出了七大关键观点:
1.数据已深入各个行业及企业功能,目前已成为除劳动力和资本以外的又一重要的生产力因素。据估计,到2009年,美国所有行业中具有1000名以上员工的公司都至少拥有一个平均200兆字节的存储数据(是1999年美国零售商沃尔玛数据库规模的两倍)。
2.以下5种使用大数据的方法可创造价值。第一,大数据可通过信息透明化及更高效的数据利用,来释放巨大的价值。第二,随着组织以数据的形式创建并存储更多的交易数据,他们能从产品库存中收集每件产品更为准确详细的性能信息,从而发现可改善之处并提高其性能。一些骨干企业正使用数据收集和分析开展控制实验,以便能做出更好的管理决策。其他企业则正利用大数据进行低频预测及高频短时预测,以便及时调整经营杠杆。第三,大数据能更加细分用户群,从而定制更为准确的产品或服务。第四,复杂的分析能大幅改善决策的制定。第五,利用大数据可改善下一代产品和服务。例如,生产商可利用产品中嵌入的传感器获得的数据,创造更有新意的售后服务,如主动维护(指故障发生前或意识到会发生故障前所采取的预防性措施)。
3.大数据的使用将成为个人公司提升竞争力、促进增长的一个关键基础。从竞争力及获得潜在价值的角度来看,所有公司都应认真对待大数据。在大多数行业,类似的竞争对手及新市场进入者将利用数据驱动策略进行创新、竞争,并从深层次及实时信息中获取价值。
4.大数据的使用,将引发新一轮的生产力增长及消费者剩余。例如,我们预估,充分利用大数据的零售商能使其营业利润率提高约60%以上。大数据能为消费者、公司及组织带来可观的收益。比如,利用个人位置数据所提供服务的用户还可创造6000亿美元的经济剩余。
5.尽管大数据可跨部门使用,但我们将美国部门的历史生产力与这些部门从大数据中获得的潜在价值进行了对比(使用索引结合一些量化指标),结果发现机遇与挑战会因部门而异。计算机电子产品和信息部门、金融保险和政府,能从大数据的使用中获得更大的好处。
6.有些组织会缺少相应的会利用大数据的必备人才。到2018年,仅美国就会缺乏14万~19万数据分析专家,以及150万深知该如何利用大数据分析进行有效决策的管理人员和分析师。
7.想要完全挖掘大数据的潜力,就必须要解决一些问题。在大数据的世界需要建立有关隐私、安全、知识产权、甚至法律责任方面的政策。组织不仅需要将合适的人才与技术安排在合适的位置上,还需要构建工作流程及激励措施将来自数据源(经常来自第三方)的信息汇聚到一起。此外,激励措施也必须到位,以确保能实现这一点。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10