京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据推动社会科学研究深挖潜力(2)_数据分析师
例如,社会分层是当代社会科学领域的重要概念。基于抽样调查数据的大量经验研究表明,主观社会地位受到客观社会地位以及相对参照群体的决定性影响。同时,跨国研究也表明,经济不平等对人们的自我阶层定位也有影响。新近利用大数据的研究则基于谷歌图书语料库811万本英语书籍、8000亿个单词的大数据,提取计算了一百年来美国书籍中阶级词汇的出现频率,以此来测量美国公众对阶层的关注程度。而对阶层关注度和美国社会百年失业率、通货膨胀、基尼系数等指标的格兰杰时间序列分析表明,在市场经济发达的美国,代表通货膨胀率和失业率之和的“经济悲惨指数”(Economic Misery)影响着阶层关注度,而基尼系数却没有统计显著的影响。这意味着,不平等对于阶层意识的作用很可能存在一种阀域效应:当社会不平等高于一定的阀值时,不平等才会对阶层意识产生作用;而当低于阀值时,是经济景气程度在影响着阶层关注度。
或缓解定量与定性之间的分歧
定量研究与定性研究是两种不同取向的研究策略,其背后蕴含着本体论、认识论和方法论上的差异。定量研究者和定性研究者常常相互指责对方的局限性,然而大数据的出现为他们提供的数据规模和全新的数据特征,在某种程度上可能会缓解分歧,甚至重构两者的关系。对定性研究者而言,大数据可以通过海量规模的样本直接展示和发现出社会现象的规律,既不需要控制变量来检验关联,更避免了定性方法在案例选择方面的样本偏差。此外,大数据可以为定性研究提供既全新又不会过于复杂的研究思维,让检索和数据描述等方法得到普遍应用。
对于定量研究者而言,目前的可用大数据往往并非专门为回归分析而设计,因此依据大数据很难进行传统意义上的回归分析和因果推断。但由于数据的海量甚至全样本的性质,一旦把基于大数据的简单关联分析或时间序列分析结果与文献中的传统回归分析进行比对,就能形成具有说服力的证据链。同时,大数据也把定量研究者的关注视野进一步开阔,从传统的定量分析领域向以往较少触及的文化现象、心理现象等领域拓展,并重新审视“描述”在定量分析中的地位。从某种意义上讲,大数据的使用使得定性和定量之间出现一个混合地带。可以预见,以描述和简单回归分析的大数据研究,将进一步融合定性定量方法的鸿沟。
为学科融合提供机遇
近代科学在理性化的指引下不断提升着专业化程度,以至于不同学科之间形成了鲜明的边界。尽管这种进程大大提高了研究效率和学术领域内的交流评估质量,但也逐渐形成了各自为政的不足。研究者在获得相当的深度的同时,往往失去了对广度的把握,并且学科边界之间形成了许多空白地带。而大数据则为学科融合提供了难得的机遇。这主要是因为,大数据的获取和分析,往往需要有别于传统社会科学训练的方法和工具。这使得原本在计算机、人工智能甚至物理、数学等领域具有专长的学者,在有意无意中不断参与到社会现象的分析队伍中来。实际上,自然科学家转型为社会科学家并非前所未有,如小世界网络研究者邓肯·瓦兹原先就是物理学家。随着大数据的出现,这样的转型案例可能会大大增多。近两年来,发表在英文刊物上的基于谷歌图书、维基百科等大数据的语言学、经济学研究论文,大多数都有计算机和自然科学家加入作者的行列。此外,由于大数据为社会科学提供了全新的分析对象,交叉学科的重要性也越来越被认识。“计算社会科学”、“应用计算科学”的方兴未艾就是典型的案例。
社会科学或出现“重返描述”潮流
当代社会科学尤其是定量分析致力于进行因果推断、提供机制性解释。由于社会人的异质性,基于非实验数据的定量分析很难避免内生性问题(遗漏变量、样本偏误、联立性等问题)。目前,社会科学研究者通过固定效应模型、倾向性匹配、工具变量等方法来加以解决以改进因果推断。从现存可用来进行社会科学分析的大数据看,它所能提供的变量有限,因此社会科学研究者很难通过大数据进行变量控制来进行传统的因果推断。然而,大数据的出现对于学术目标的进一步丰富和发展却无疑是深远的。首先,基于信息技术而兴起的大数据扩展了人类的经验范围,从而使得简单的统计描述就可以达到发现规律、展示规律的目的。这使得人们有可能凭借大数据而提出理论,而不仅仅是利用抽样数据对传统理论和假说进行证伪。其次,大数据的信息具有在时空上传统抽样数据所无法比拟的广度和深度。在大数据时代,社会科学尤其是定量社会科学可能在一定程度上将不再单纯以进行反事实因果推断、探求机制性解释为主要学科发展目标,而是出现一种“重返描述”的潮流。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15