
大数据应用时代来袭 SaaS走向没落_数据分析师
随着大量的信息涌入互联网——90%的互联网是过去两年建立起来的——互联网公司正在想方设法去熟悉并利用大数据来推动他们的业务。正如SaaS和云技术一样完全变革了企业的运作方式一样,大数据应用(BDA)也同样可以。 BDA是基于网络的应用,它通过解释和使用大量的企业和网络规模的数据,为他们的用户提供更智能的结果。0
但真正的问题是:假如底层的数据结构使用Hadoop和noSQL会是什么样的一个情况?没有一家大公司的CEO会为可扩展数据结构带来的价值主张而感到兴奋不已,BDA就是在这样的背景下应运而生的。BDA不只是重新包装你的数据,让界面看起来比较酷炫或者使数据扩展性的效率得到提高,它们是利用全世界的数据,给你提供更好的结果——比如说带来更多的收入。0
SaaS对于企业软件来说是一种不同的交付模式:它允许即时注册,极大地降低整合成本,并允许用户购买前试用,而且具有良好的可扩展性。Salesforce.com通过转变CRM行业开启了云技术变革,随即被很多各种类型的企业软件争相效仿,如为HR提供服务的Taleo/Successfactors , 提供ERP服务的Netsuite公司以及提供网站数据分析的Omniture 公司等。SaaS增加了商业软件市场规模的同时为大企业带来了更好的投资回报率。但它忽略了一件重要的事情——它并没有改变核心应用软件的基本功能。 Salesforce没有添加企业面对面的Siebel CRM功能—— 它只是让人更容易采纳并且维护费用较低而已。0
Google、亚马逊、Facebook等公司对软件消费方的大数据有很好的理解。亚马逊CTO Werner Vogels最近在CeBIT(德国汉诺威国际信息及通信技术博览会)上发表专题演讲时指出,失误出现主要是因为没有足够的数据备份来提供补救措施。随着更多的用户和数据加入核心引擎的应用程序,所有这些让软件变得更加难以应付,显得更为智能且更有价值。现在,BDA企业正在不断兴起,并且它们会是未来的发展趋势,以下就是些很好的例子:0
LinkedIn是一家专门提供招募人才软件市场的BDA公司。LinkedIn不是让你把联系人加入单独的通讯录,而是将这些联系人全部联系在一起,让用户与用户、用户和有关键竞争力的招聘者之间建立起联系。每个用户加入LinkedIn,LinkedIn的BDA存储栈都会接受到信号,从而方便招聘者掌握他们的所有资料,而不仅仅是单个用户的相对分散的资料。在资源共享的情况下,小型的专业的招聘公司就可以与那些大的猎头公司进行竞争。
Bazaarvoice是一家专注社会化共享的BDA公司。他们在网络上搜集客户评论,然后将这些信息提供给很多网站。传统的基于SaaS的方法存在这样一个弊端:它们只是在单独的网站上搜集和发布客户评论。相反,Bazaarvoice从整个网络进行信息搜集,从而确保只要客户的网站出现一款新的产品,即时的评论就会呈现给你,这样Bazaarvoice就为所有Amazon.com销售者提供可比较的评论数据库。
我们自己的BloomReach公司,是一家专注市场营销的BDA公司。我们仅通过对网站进行分析就可以为网站所有者找出相关遗漏信息,而这些信息可以为网站所有者带来可观的利润。我们分析全网络用户的需求,针对特定的用户在整个网络内建立语义模型,然后根据那些与用户最相关的内同不断增加网点。Adobe旗下的Omniture公司在SaaS的应用软件中包装你的数据,为你的企业提供营销建议,而BloomReach则是先对网站的数据进行分析,然后设法为该网站带来更多的流量,从而给他们的客户带来更多的利润。
事实上,BDA本身就好于SaaS,因为它们不仅具备SaaS交付模式的所有好处,而且还有搜集数据过程所带来的网络效应。随着时间的推移,独特的数据能够为用户和应用提供商带来网络效应,是一笔宝贵的财富。目前,因为企业外部的数据要多于企业内部,仅仅因为数据分析和工作流程的需要,就对企业内部数据进行重新包装的想法看起来显得有点古怪。0
BDA公司创造价值的方式与SaaS公司大相径庭。BDA公司是由一群在大系统方面有着丰富经验的人建立起来的,他们在机器学习和数据挖掘发面具有很深的造诣,比如说我的合伙人Ashutosh Garg就是这样的人。虽然BAD和SaaS的目标都是针对企业内部,但BAD的投资回报率要高于SaaS,因为每个客户会给引擎增添数据,反过来这些数据又会重新为这些客户所用,所谓取之于民,用之于民。目前市场上对SaaS公司有三个评判指标:用户的生命周期价值,客户开发成本,以及增长率。毫无疑问大多数SaaS公司具有很高的增长率,但相比之下BAD公司在生命周期价值和开发客户成本方面却更胜一筹。0
BDA的革命才刚刚开始,相信将来它会带来更加广泛的影响。如果我们要再次建立CRM,我们将不只是跟踪销售人员的效率,我们会建议你如何利用整个行业的数据与你的对手竞争。如果我们要建立市场自动化营销软件(如Marketo,Eloqua),我们将不只是捕捉和培育客户所产生的线索,我们会在整个网络中去发现并为他们吸引更多的线索。如果我们建立一个财务应用软件,它将不只是将追踪贵公司的财务状况,而且与你同类的上市公司进行对比,你可以衡量自己的现状来决定采取最佳措施。0
像任何新技术一样,新事物的出现并不意味着旧事物的立即消亡,这需要一个更替的过程。虽然Oracle公司和SAP公司仍是大公司,但Salesforce.com是一个有着20亿美元市值的庞然大物,绝对不可小觑。我们有理由相信未来是属于BDA的,是时候对SaaS说再见并且迎接BDA的到来了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18