
2015年大数据展望:停止空谈 拥抱革命
在涂子沛最终说服太太,带着还在上三年级的孩子举家从硅谷迁徙到杭州时,他或许不会想到,这一举动除了将给自己的生活带来翻天覆地的变化外,还带着某种标志性意义。作为《大数据》《数据之巅》两本畅销书的作者,涂子沛在2014年底加盟阿里巴巴任副总裁,从事数据新商业模式的研究。这似乎也预示着,在2015年大数据的发展将会呈现新的发展趋势。
如果说过去的一年里,有什么改变了我们的生活,那一定是科技的迅速变革与推动所带来的变化。2014年云计算成为了香饽饽,领域市场大势爆发,众多企业将眼光望向了云服务领域,同时基于云计算技术而发展的大数据技术,从概念阶段逐渐发展成为新数字时代中的核心技术。
美国着名咨询公司麦肯锡对大数据的定义,是指大小超出常规的数据库工具获取、存储、管理和分析能力的数据集。国际数据公司IDC根据大数据的四个特征,定义其为海量的数据规模(Volume)、快速的数据流转和动态的数据体系(Velocity)、多样的数据类型(Variety)、巨大的数据价值(Value)。
在过去的一年,大数据以惊人的速度从理论迈向应用,成功的推动了各个领域的产业变化与行业融合,当前的现状与未来发展,值得所有行业深刻认识并重视。
2014年大数据应用遍地开花
过去的一年,大数据技术几乎渗透了各个领域的各个行业。
全球关注的2014年巴西世界杯赛事期间,谷歌云计算平台通过大数据技术分析,成功预测了世界杯16强每场比赛的胜利者,而冠军队德国国家队宣布,他们运用了SAPMatchInsights解决方案进行赛后分析,大数据技术成为获胜的关键;8月,联合国开发计划署与百度达成战略合作,共建大数据联合实验室,利用大数据技术针对环保、健康、教育和灾害等全球性问题进行分析和趋势预测,提供发展策略建议;12月,淘宝公布的《2014年淘宝联动知识产权局打假报告》显示,阿里巴巴通过大量数据分析追查打击假货源,2010年至今已处理各类专利侵权投诉案件3000余件。同时,苹果“预留后门”和12306用户信息泄露等事件,也暴露出大数据迅猛发展的同时,数据安全存在很大的隐患。
去年6月,中国科学院大学首次召开了“大数据技术与应用”方向人才培养研讨会,提出人才培养与科研优势结合培养复合型大数据人才,将中国大数据人才教育提上议程,推动相关人才培养,足见未来我国大数据市场的前景广阔。
大数据行业应用愈发完善
在云计算爆发推助智能科技加速发展的一年,2014年大数据产业从理论到应用向前迈进了大大的一步。
2014年12月,中关村大数据产业联盟与中国计算机协会共同发布了 《中国大数据白皮书》,第一次全面深入且系统完整的从我国大数据的产业与学术的大方向,就国家主权、政府政策、产业发展、数据科学、投资理念、公司战略等分析了我国大数据市场当前以及未来发展现状,这是我国大数据行业逐步迈向产业系统化的重要一步。
速途网记者采访了中关村大数据产业联盟秘书长赵国栋,他表示今年众多行业的众多企业从根本上对大数据的认知与需求有了变化,百度、腾讯等互联网巨头公司对数据的重视程度超乎想象,中小企业也随着大潮流的步伐体会到了大数据所带来的产业变化。
赵国栋提出,在随之而来的大数据时代,三大发展理论能够概述2014年大数据的发展:第一,从微观层面上来看,企业战略思想发生了根本变化,以数据资产为核心来重新审视公司的价值也未来走向;第二,从中观层面来看,区域经济发展中产业高度融合,大数据成为了经济发展的新动力;第三,以中间市场为特征的组织变革,推动了产业生态紧密融合。大数据这些层面的发展理论,将演变成新的大数据商学体系。
大数据思潮推动产业全面落地
虽然大数据市场相比前年有了跨越性的发展,然而当前的现状却依然处在初步阶段,除了IT互联网类的大型企业深刻认识并重视研发应用,其他行业的中小企业乃至普罗大众对大数据概念的认识还很微弱,甚至存在误读误解。
赵国栋向记者介绍,大数据是新兴技术发展到一定阶段后,产生一系列社会现象,这是与各行各业都紧密融合的新思潮,是经济发展的新现象,更是推动经济发展的新动力,但社会各阶层对大数据的认知不均,将有可能影响到其市场发展。
另一方面,大数据新兴技术脱离了软件与硬件,将数据进化成独立的发展产业,推助了更多领域的发展。例如正在热议互联网银行,腾讯微众银行的运营系统就是完全依托大数据而成的,从试运营期间的客户选择,到客户的经济社交、信用度与贷款额度,完全通过大数据进行分析和信息筛选,最后得出准确的征信报告。其次,各个城市政府正在大力推行的智慧医疗、智慧交通与智慧教育,都依托于大数据技术的基础而建设。
2015年,大数据独立的发展将形成特有的市场化于规模化,全面落地的技术建设,从产业到行业的成熟,将推动更多传统企业向科技智能化转型,也将推动更多新产业和市场的爆发。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01