京公网安备 11010802034615号
经营许可证编号:京B2-20210330
2015年大数据展望:停止空谈 拥抱革命
在涂子沛最终说服太太,带着还在上三年级的孩子举家从硅谷迁徙到杭州时,他或许不会想到,这一举动除了将给自己的生活带来翻天覆地的变化外,还带着某种标志性意义。作为《大数据》《数据之巅》两本畅销书的作者,涂子沛在2014年底加盟阿里巴巴任副总裁,从事数据新商业模式的研究。这似乎也预示着,在2015年大数据的发展将会呈现新的发展趋势。
如果说过去的一年里,有什么改变了我们的生活,那一定是科技的迅速变革与推动所带来的变化。2014年云计算成为了香饽饽,领域市场大势爆发,众多企业将眼光望向了云服务领域,同时基于云计算技术而发展的大数据技术,从概念阶段逐渐发展成为新数字时代中的核心技术。
美国着名咨询公司麦肯锡对大数据的定义,是指大小超出常规的数据库工具获取、存储、管理和分析能力的数据集。国际数据公司IDC根据大数据的四个特征,定义其为海量的数据规模(Volume)、快速的数据流转和动态的数据体系(Velocity)、多样的数据类型(Variety)、巨大的数据价值(Value)。
在过去的一年,大数据以惊人的速度从理论迈向应用,成功的推动了各个领域的产业变化与行业融合,当前的现状与未来发展,值得所有行业深刻认识并重视。
2014年大数据应用遍地开花
过去的一年,大数据技术几乎渗透了各个领域的各个行业。
全球关注的2014年巴西世界杯赛事期间,谷歌云计算平台通过大数据技术分析,成功预测了世界杯16强每场比赛的胜利者,而冠军队德国国家队宣布,他们运用了SAPMatchInsights解决方案进行赛后分析,大数据技术成为获胜的关键;8月,联合国开发计划署与百度达成战略合作,共建大数据联合实验室,利用大数据技术针对环保、健康、教育和灾害等全球性问题进行分析和趋势预测,提供发展策略建议;12月,淘宝公布的《2014年淘宝联动知识产权局打假报告》显示,阿里巴巴通过大量数据分析追查打击假货源,2010年至今已处理各类专利侵权投诉案件3000余件。同时,苹果“预留后门”和12306用户信息泄露等事件,也暴露出大数据迅猛发展的同时,数据安全存在很大的隐患。
去年6月,中国科学院大学首次召开了“大数据技术与应用”方向人才培养研讨会,提出人才培养与科研优势结合培养复合型大数据人才,将中国大数据人才教育提上议程,推动相关人才培养,足见未来我国大数据市场的前景广阔。
大数据行业应用愈发完善
在云计算爆发推助智能科技加速发展的一年,2014年大数据产业从理论到应用向前迈进了大大的一步。
2014年12月,中关村大数据产业联盟与中国计算机协会共同发布了 《中国大数据白皮书》,第一次全面深入且系统完整的从我国大数据的产业与学术的大方向,就国家主权、政府政策、产业发展、数据科学、投资理念、公司战略等分析了我国大数据市场当前以及未来发展现状,这是我国大数据行业逐步迈向产业系统化的重要一步。
速途网记者采访了中关村大数据产业联盟秘书长赵国栋,他表示今年众多行业的众多企业从根本上对大数据的认知与需求有了变化,百度、腾讯等互联网巨头公司对数据的重视程度超乎想象,中小企业也随着大潮流的步伐体会到了大数据所带来的产业变化。
赵国栋提出,在随之而来的大数据时代,三大发展理论能够概述2014年大数据的发展:第一,从微观层面上来看,企业战略思想发生了根本变化,以数据资产为核心来重新审视公司的价值也未来走向;第二,从中观层面来看,区域经济发展中产业高度融合,大数据成为了经济发展的新动力;第三,以中间市场为特征的组织变革,推动了产业生态紧密融合。大数据这些层面的发展理论,将演变成新的大数据商学体系。
大数据思潮推动产业全面落地
虽然大数据市场相比前年有了跨越性的发展,然而当前的现状却依然处在初步阶段,除了IT互联网类的大型企业深刻认识并重视研发应用,其他行业的中小企业乃至普罗大众对大数据概念的认识还很微弱,甚至存在误读误解。
赵国栋向记者介绍,大数据是新兴技术发展到一定阶段后,产生一系列社会现象,这是与各行各业都紧密融合的新思潮,是经济发展的新现象,更是推动经济发展的新动力,但社会各阶层对大数据的认知不均,将有可能影响到其市场发展。
另一方面,大数据新兴技术脱离了软件与硬件,将数据进化成独立的发展产业,推助了更多领域的发展。例如正在热议互联网银行,腾讯微众银行的运营系统就是完全依托大数据而成的,从试运营期间的客户选择,到客户的经济社交、信用度与贷款额度,完全通过大数据进行分析和信息筛选,最后得出准确的征信报告。其次,各个城市政府正在大力推行的智慧医疗、智慧交通与智慧教育,都依托于大数据技术的基础而建设。
2015年,大数据独立的发展将形成特有的市场化于规模化,全面落地的技术建设,从产业到行业的成熟,将推动更多传统企业向科技智能化转型,也将推动更多新产业和市场的爆发。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27