京公网安备 11010802034615号
经营许可证编号:京B2-20210330
常见算法分类_数据分析师
机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。
它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。
综合分类
综合考虑各种学习方法出现的历史渊源、知识表示、推理策略、结果评估的相似性、研究人员交流的相对集中性以及应用领域等诸因素。将机器学习方法[1]区分为以下六类:
1)经验性归纳学习 (empirical inductive learning)
经验性归纳学习采用一些数据密集的经验方法(如版本空间法、ID3法,定律发现方法)对例子进行归纳学习。其例子和学习结果一般都采用属性、谓词、关系等符号表示。它相当于基于学习策略分类中的归纳学习,但扣除联接学习、遗传算法、加强学习的部分。
2)分析学习(analytic learning)
分析学习方法是从一个或少数几个实例出发,运用领域知识进行分析。其主要特征为:
分析学习的目标是改善系统的性能,而不是新的概念描述。分析学习包括应用解释学习、演绎学习、多级结构组块以及宏操作学习等技术。
3)类比学习
它相当于基于学习策略分类中的类比学习。在这一类型的学习中比较引人注目的研究是通过与过去经历的具体事例作类比来学习,称为基于范例的学习(case_based learning),或简称范例学习。
4)遗传算法(genetic algorithm)
遗传算法模拟生物繁殖的突变、交换和达尔文的自然选择(在每一生态环境中适者生存)。它把问题可能的解编码为一个向量,称为个体,向量的每一个元素称为基因,并利用目标函数(相应于自然选择标准)对群体(个体的集合)中的每一个个体进行评价,根据评价值(适应度)对个体进行选择、交换、变异等遗传操作,从而得到新的群体。遗传算法适用于非常复杂和困难的环境,比如,带有大量噪声和无关数据、事物不断更新、问题目标不能明显和精确地定义,以及通过很长的执行过程才能确定当前行为的价值等。同神经网络一样,遗传算法的研究已经发展为人工智能的一个独立分支,其代表人物为霍勒德(J.H.Holland)。
5)联接学习
典型的联接模型实现为人工神经网络,其由称为神经元的一些简单计算单元以及单元间的加权联接组成。
6)增强学习(reinforcement learning)
增强学习的特点是通过与环境的试探性(trial and error)交互来确定和优化动作的选择,以实现所谓的序列决策任务。在这种任务中,学习机制通过选择并执行动作,导致系统状态的变化,并有可能得到某种强化信号(立即回报),从而实现与环境的交互。强化信号就是对系统行为的一种标量化的奖惩。系统学习的目标是寻找一个合适的动作选择策略,即在任一给定的状态下选择哪种动作的方法,使产生的动作序列可获得某种最优的结果(如累计立即回报最大)。
在综合分类中,经验归纳学习、遗传算法、联接学习和增强学习均属于归纳学习,其中经验归纳学习采用符号表示方式,而遗传算法、联接学习和加强学习则采用亚符号表示方式;分析学习属于演绎学习。
实际上,类比策略可看成是归纳和演绎策略的综合。因而最基本的学习策略只有归纳和演绎。
从学习内容的角度看,采用归纳策略的学习由于是对输入进行归纳,所学习的知识显然超过原有系统知识库所能蕴涵的范围,所学结果改变了系统的知识演绎闭包, 因而这种类型的学习又可称为知识级学习;而采用演绎策略的学习尽管所学的知识能提高系统的效率,但仍能被原有系统的知识库所蕴涵,即所学的知识未能改变系统的演绎闭包,因而这种类型的学习又被称为符号级学习。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16