京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析工具入门:左手SPSS,右手EXCEL_数据分析师
产品经理要会数据分析,大家基本都可以达成共识,如何做数据分析,可以写好几本书,这里从工具学习和使用角度说下如何进行数据分析入门。
通常来讲,二八原则在多个范畴适用,同样,在产品经理当中,相信80%的人在用EXCEL做数据分析,能满足80%的分析需求。
标题为右手EXCEL,因为80%的人右手比左手灵活,用工具也这样,先把常用的学会就好,至少一年级产品经理,赶快把EXCEL好好学习下。我在面试产品运营同学的时候,遇到说自己EXCEL用的好的,通常会问是使用哪个版本?否知道EXCEL最大可以处理多少条数据?行数与列数的极限分别是多少?常用哪些功能?哪些函数?举一个工作案例说说如何用EXCEL。
左手SPSS,为何是SPSS,因为从我个人角度出发,EXCEL+SPSS基本可以解决产品经理进行数据分析中的95%的问题,二年级产品经理,可以开始学习SPSS的数据分析。其实SPSS入门非常容易,学习能力强的,工作第一年,都可以开始初步学习了,而且有必要提前学习一些统计学基础知识。
我从什么时候开始学习SPSS?——这里感谢下我的大学计算机老师韦老师,1995年教我们学习计算机,学习SPSS数据统计分析,当时还是DOS版本SPSS/PC+,其实韦老师是北师大的心理学博士,不少人很奇怪我大学学习的是教育学和心理学,咋这么喜欢搞数据,韦老师是我的启蒙老师,学心理学,咋能不搞数据分析呢。还有当时的统计学课程梁老师,梁老师很漂亮,增强了我学习统计学的浓厚兴趣。我的本科毕业论文指导老师余欣欣,也是心理学博士,当时带我们做学习策略实验研究的课题,算是我完整参与的第一个研究项目,也是数据分析与挖掘的一次实战应用。
今天说下SPSS,先看两段介绍,分别来自百度百科、维基百科,两端文字介绍,个人认为维基百科的更加清晰。
SPSS——百度百科
SPSS是世界上最早的统计分析软件,由美国斯坦福大学的三位研究生Norman H. Nie、C. Hadlai (Tex) Hull 和 Dale H. Bent于1968年研究开发成功,同时成立了SPSS公司,并于1975年成立法人组织、在芝加哥组建了SPSS总部。1984年SPSS总部首先推出了世界上第一个统计分析软件微机版本SPSS/PC+,开创了SPSS微机系列产品的开发方向,极大地扩充了它的应用范围,并使其能很快地应用于自然科学、技术科学、社会科学的各个领域。世界上许多有影响的报刊杂志纷纷就SPSS的自动统计绘图、数据的深入分析、使用方便、功能齐全等方面给予了高度的评价。
SPSS——维基百科
SPSS原名社会科学统计包(英语 Statistical Package for the Social Sciences),由于用户早已不限于社会科学界,2000年根据缩写改为“SPSS”。
1968年,美国斯坦福大学的3位研究生开发出最早的SPSS软件,当时主要面向中小型计算机和企业用户,产品统称SPSSx版。1975年,芝加哥成立了SPSS公司。1984年,SPSS公司首先推出了世界上第一个可以在DOS上运行的统计分析软件的PC版本,即SPSS/PC+版。后来又相继推出了Windows和Mac OS X等操作系统上的版本,并不断扩展软件的功能相关服务,形成了目前SPSS的基本面貌。2008年9月15日,SPSS 17.0 for Windows版发布。2009年7月28日,SPSS公司发表PASW(Predictive Analytics Suite Workstation)18.0,同时该公司也被IBM收购。
SPSS 18.0由17个功能模组组成:
上面的17个名词,看着很难的样子,一堆的名词,根据产品经理实际工作用的应用,归纳了一下,P2级别到P3级别产品经理学习如下功能就差不多可以解决日常工作中的90%数据分析与挖掘问题,哪些知识点呢,见下面的图。
SPSS目前的最新版本是SPSS Statistics 21.0。这里推荐两本比较实用的书籍,作者分别是薛薇和张文彤,另外张文彤在2004年出的初级版和高级版据说被很多大学采用作为教材。
学习这类工具的一大要点就是实践应用,看书,很快看完了,但没有实践的应用难以熟练,纸上得来终觉浅。学习工具,其实不难,难的是对产品数据的理解和应用,只懂分析工具,不了解产品与用户,是难以深入的,甚至会走入误区。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27