京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析工具入门:左手SPSS,右手EXCEL_数据分析师
产品经理要会数据分析,大家基本都可以达成共识,如何做数据分析,可以写好几本书,这里从工具学习和使用角度说下如何进行数据分析入门。
通常来讲,二八原则在多个范畴适用,同样,在产品经理当中,相信80%的人在用EXCEL做数据分析,能满足80%的分析需求。
标题为右手EXCEL,因为80%的人右手比左手灵活,用工具也这样,先把常用的学会就好,至少一年级产品经理,赶快把EXCEL好好学习下。我在面试产品运营同学的时候,遇到说自己EXCEL用的好的,通常会问是使用哪个版本?否知道EXCEL最大可以处理多少条数据?行数与列数的极限分别是多少?常用哪些功能?哪些函数?举一个工作案例说说如何用EXCEL。
左手SPSS,为何是SPSS,因为从我个人角度出发,EXCEL+SPSS基本可以解决产品经理进行数据分析中的95%的问题,二年级产品经理,可以开始学习SPSS的数据分析。其实SPSS入门非常容易,学习能力强的,工作第一年,都可以开始初步学习了,而且有必要提前学习一些统计学基础知识。
我从什么时候开始学习SPSS?——这里感谢下我的大学计算机老师韦老师,1995年教我们学习计算机,学习SPSS数据统计分析,当时还是DOS版本SPSS/PC+,其实韦老师是北师大的心理学博士,不少人很奇怪我大学学习的是教育学和心理学,咋这么喜欢搞数据,韦老师是我的启蒙老师,学心理学,咋能不搞数据分析呢。还有当时的统计学课程梁老师,梁老师很漂亮,增强了我学习统计学的浓厚兴趣。我的本科毕业论文指导老师余欣欣,也是心理学博士,当时带我们做学习策略实验研究的课题,算是我完整参与的第一个研究项目,也是数据分析与挖掘的一次实战应用。
今天说下SPSS,先看两段介绍,分别来自百度百科、维基百科,两端文字介绍,个人认为维基百科的更加清晰。
SPSS——百度百科
SPSS是世界上最早的统计分析软件,由美国斯坦福大学的三位研究生Norman H. Nie、C. Hadlai (Tex) Hull 和 Dale H. Bent于1968年研究开发成功,同时成立了SPSS公司,并于1975年成立法人组织、在芝加哥组建了SPSS总部。1984年SPSS总部首先推出了世界上第一个统计分析软件微机版本SPSS/PC+,开创了SPSS微机系列产品的开发方向,极大地扩充了它的应用范围,并使其能很快地应用于自然科学、技术科学、社会科学的各个领域。世界上许多有影响的报刊杂志纷纷就SPSS的自动统计绘图、数据的深入分析、使用方便、功能齐全等方面给予了高度的评价。
SPSS——维基百科
SPSS原名社会科学统计包(英语 Statistical Package for the Social Sciences),由于用户早已不限于社会科学界,2000年根据缩写改为“SPSS”。
1968年,美国斯坦福大学的3位研究生开发出最早的SPSS软件,当时主要面向中小型计算机和企业用户,产品统称SPSSx版。1975年,芝加哥成立了SPSS公司。1984年,SPSS公司首先推出了世界上第一个可以在DOS上运行的统计分析软件的PC版本,即SPSS/PC+版。后来又相继推出了Windows和Mac OS X等操作系统上的版本,并不断扩展软件的功能相关服务,形成了目前SPSS的基本面貌。2008年9月15日,SPSS 17.0 for Windows版发布。2009年7月28日,SPSS公司发表PASW(Predictive Analytics Suite Workstation)18.0,同时该公司也被IBM收购。
SPSS 18.0由17个功能模组组成:
上面的17个名词,看着很难的样子,一堆的名词,根据产品经理实际工作用的应用,归纳了一下,P2级别到P3级别产品经理学习如下功能就差不多可以解决日常工作中的90%数据分析与挖掘问题,哪些知识点呢,见下面的图。
SPSS目前的最新版本是SPSS Statistics 21.0。这里推荐两本比较实用的书籍,作者分别是薛薇和张文彤,另外张文彤在2004年出的初级版和高级版据说被很多大学采用作为教材。
学习这类工具的一大要点就是实践应用,看书,很快看完了,但没有实践的应用难以熟练,纸上得来终觉浅。学习工具,其实不难,难的是对产品数据的理解和应用,只懂分析工具,不了解产品与用户,是难以深入的,甚至会走入误区。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16