京公网安备 11010802034615号
经营许可证编号:京B2-20210330
对大数据的认识不应盲目跟风_数据分析师
由于大数据技术发展迅速,一些囫囵吞枣的浅知误见也随之流传,如不及时纠正,将造成对大数据先入为主的误区,影响经济社会发展。
近年来,大数据在我国得到一致重视,各行各业兴起了一股重视大数据、应用大数据的热潮。这种全民迅速接受新生事物的现象,反映了中国经过改革开放,现代化意识深入人心的可喜状况,令人鼓舞。但是,由于大数据技术发展迅速,一些囫囵吞枣的浅知误见也随之流传,如不及时纠正,将造成对大数据先入为主的误区,影响经济社会发展。当前国内十分流行的《大数据时代》(维克托·迈尔-舍恩伯格等著,浙江人民出版社,2013年,以下简称《时代》)中提出了三个存在严重谬误的观点,特此指出,以期引起注意。
“不是因果关系,而是相互关系”?
《时代》一书的主要观点之一是,大数据时代“不是因果关系,而是相互关系”。其实,早在18世纪,英国怀疑论者休谟就指出,“不但我们的理性不能帮助我们发现原因和结果的最终联系,而且经验给我们指出它们的恒常结合以后,我们也不能凭自己的理性使自己相信,我们为什么把那种经验扩大到我们所曾观察过那些特殊事物以外。我们只是假设,却永远不能证明,我们所经验过的那些事物必然类似于我们所未曾发现的那些对象。”
《时代》一书将这一早已提出几个世纪的观点,作为大数据时代的新概念,不仅陈旧,而且错误。因为,简单地说大数据时代“不是因果关系,而是相互关系”,说明作者不了解因果关系本身也是一种相互关系,即原因与结果前后相继的相互关系,因此将因果关系归结为相互关系并不比因果关系本身更有内涵,实际上,这甚至是一种同义反复。
正确的观点应该明确因果关系是一种什么样的相互关系,而这一点经过20世纪自然科学和数理哲学的研究已经有了更深刻的认识。计算机的发明,使得人们开始从计算机语言表达、传递信息的角度来理解知识的起点。大数据时代的到来,使得人们豁然开朗。
经济学者李德伟教授在《时代》中译本发表之前,就已提出大数据时代不再强调因果关系,也不是简单地将因果关系归为相互关系,而是精确地指出客观事物运动序列之间存在同构关系,特别是人类认识与外部客观事物之间存在对应的、同构的关系,信息的表达、传输和存储就是一种同构关系,也就是说,外部客观事物运动与人的主观认识都是客观世界的事物现象,是协调性的、一一对应的相互关系,主观认识映像只是承载、传递外部客观事物现象的一种符号系统。无论是从人自身悟出来,还是从外部经验事物抽象出来,都是同构的、对应的关系。
“不是随机样本,而是全体数据”?
《时代》一书认为大数据时代“不是随机样本,而是全体数据”,认识事物不再是从随机抽取的部分样本,而是从全部数据出发。这种说法忽视了全部与部分的辩证关系。人类在有限的时间内不可能穷尽事物的全部,绝对真理只能在人类前后相继的、永远不会停止的认识过程中实现。任何事物的发展总是有过去、现在和未来,现在的是现在,未来的尚未出现,全部案例不可能在有限时间内达到,认识也永远不会完结。未来的与过去和现在相比还是无穷大的。正因为如此,波普尔才提出,“全称命题不可证实,只能证伪。”
实际上,过去的小数据时代的抽样调查方法与现在的大数据方法相比,只能说是大数据时代可以用更为精确的、全面的数据,以包含更大因素的仿真模型来追踪、分析模拟现实,取得比过去更为精确的认识结果。尽管如此,与全体相比,已经认识的永远是少数,误差、错误还是不能完全消除。例如,通过人口普查分析现在中国人具有什么特点。不要说全部认识现有13亿人口的全部属性不可能(因为事物属性有无穷层次),即使说能够完全认识现有13亿人口全部属性,也不意味着过去、未来的中国人,也能够全部认识。未来的中国人与已经认识的现有中国人相比还是无穷大。因此,大数据与小数据相比只是以巨量的、全面的、即时的数据来认识事物,但是要掌握全体数据在有限时间内总是不可能的。
“不是精确性,而是混杂性”?
《时代》作者说大数据时代“不是精确性,而是混杂性”,意指小数据时代是讲究精确性,大数据时代因为掌握了大量数据可以不再拘泥于精确性,而是依靠大数据比较模糊地行动。这显然是错误的。因为在小数据时代能够掌握精确的小数据,但是大多数数据却被遗漏、舍弃,认识的结果就无法实现精确、全面,真理和错误的边界也不是很清楚,这时的认识是模糊的、有偏差的。在大数据时代,因为掌握了更为全面的数据,可以在更大的范围认识事物,因此,能够更为准确、量化,以至于对一些中间模糊区域也可以得到更为准确的认识,其精确度和模糊度、误差本身都更为精确量化。例如,在计算机信息系统中,发布更多的信息,通过反复比对、纠错机制,降低噪音,到达精确度。这一点在人类的认识活动中本来就是这样做的,“耳听为虚”就以“眼见为实”来纠错,小数据一两个来回不可能正确,反复多次大数据比对,就能达到越来越高的精确度,误差率就越来越小。
中国人口世界第一,信息产业市场最大,最有机会发展信息化、大数据和智慧化产业。但中国目前在对大数据的认识上有一种盲目跟外国之风的倾向。对于国外大数据理论,我们应以批判的眼光保持清醒的认识。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22