京公网安备 11010802034615号
经营许可证编号:京B2-20210330
对大数据的认识不应盲目跟风_数据分析师
由于大数据技术发展迅速,一些囫囵吞枣的浅知误见也随之流传,如不及时纠正,将造成对大数据先入为主的误区,影响经济社会发展。
近年来,大数据在我国得到一致重视,各行各业兴起了一股重视大数据、应用大数据的热潮。这种全民迅速接受新生事物的现象,反映了中国经过改革开放,现代化意识深入人心的可喜状况,令人鼓舞。但是,由于大数据技术发展迅速,一些囫囵吞枣的浅知误见也随之流传,如不及时纠正,将造成对大数据先入为主的误区,影响经济社会发展。当前国内十分流行的《大数据时代》(维克托·迈尔-舍恩伯格等著,浙江人民出版社,2013年,以下简称《时代》)中提出了三个存在严重谬误的观点,特此指出,以期引起注意。
“不是因果关系,而是相互关系”?
《时代》一书的主要观点之一是,大数据时代“不是因果关系,而是相互关系”。其实,早在18世纪,英国怀疑论者休谟就指出,“不但我们的理性不能帮助我们发现原因和结果的最终联系,而且经验给我们指出它们的恒常结合以后,我们也不能凭自己的理性使自己相信,我们为什么把那种经验扩大到我们所曾观察过那些特殊事物以外。我们只是假设,却永远不能证明,我们所经验过的那些事物必然类似于我们所未曾发现的那些对象。”
《时代》一书将这一早已提出几个世纪的观点,作为大数据时代的新概念,不仅陈旧,而且错误。因为,简单地说大数据时代“不是因果关系,而是相互关系”,说明作者不了解因果关系本身也是一种相互关系,即原因与结果前后相继的相互关系,因此将因果关系归结为相互关系并不比因果关系本身更有内涵,实际上,这甚至是一种同义反复。
正确的观点应该明确因果关系是一种什么样的相互关系,而这一点经过20世纪自然科学和数理哲学的研究已经有了更深刻的认识。计算机的发明,使得人们开始从计算机语言表达、传递信息的角度来理解知识的起点。大数据时代的到来,使得人们豁然开朗。
经济学者李德伟教授在《时代》中译本发表之前,就已提出大数据时代不再强调因果关系,也不是简单地将因果关系归为相互关系,而是精确地指出客观事物运动序列之间存在同构关系,特别是人类认识与外部客观事物之间存在对应的、同构的关系,信息的表达、传输和存储就是一种同构关系,也就是说,外部客观事物运动与人的主观认识都是客观世界的事物现象,是协调性的、一一对应的相互关系,主观认识映像只是承载、传递外部客观事物现象的一种符号系统。无论是从人自身悟出来,还是从外部经验事物抽象出来,都是同构的、对应的关系。
“不是随机样本,而是全体数据”?
《时代》一书认为大数据时代“不是随机样本,而是全体数据”,认识事物不再是从随机抽取的部分样本,而是从全部数据出发。这种说法忽视了全部与部分的辩证关系。人类在有限的时间内不可能穷尽事物的全部,绝对真理只能在人类前后相继的、永远不会停止的认识过程中实现。任何事物的发展总是有过去、现在和未来,现在的是现在,未来的尚未出现,全部案例不可能在有限时间内达到,认识也永远不会完结。未来的与过去和现在相比还是无穷大的。正因为如此,波普尔才提出,“全称命题不可证实,只能证伪。”
实际上,过去的小数据时代的抽样调查方法与现在的大数据方法相比,只能说是大数据时代可以用更为精确的、全面的数据,以包含更大因素的仿真模型来追踪、分析模拟现实,取得比过去更为精确的认识结果。尽管如此,与全体相比,已经认识的永远是少数,误差、错误还是不能完全消除。例如,通过人口普查分析现在中国人具有什么特点。不要说全部认识现有13亿人口的全部属性不可能(因为事物属性有无穷层次),即使说能够完全认识现有13亿人口全部属性,也不意味着过去、未来的中国人,也能够全部认识。未来的中国人与已经认识的现有中国人相比还是无穷大。因此,大数据与小数据相比只是以巨量的、全面的、即时的数据来认识事物,但是要掌握全体数据在有限时间内总是不可能的。
“不是精确性,而是混杂性”?
《时代》作者说大数据时代“不是精确性,而是混杂性”,意指小数据时代是讲究精确性,大数据时代因为掌握了大量数据可以不再拘泥于精确性,而是依靠大数据比较模糊地行动。这显然是错误的。因为在小数据时代能够掌握精确的小数据,但是大多数数据却被遗漏、舍弃,认识的结果就无法实现精确、全面,真理和错误的边界也不是很清楚,这时的认识是模糊的、有偏差的。在大数据时代,因为掌握了更为全面的数据,可以在更大的范围认识事物,因此,能够更为准确、量化,以至于对一些中间模糊区域也可以得到更为准确的认识,其精确度和模糊度、误差本身都更为精确量化。例如,在计算机信息系统中,发布更多的信息,通过反复比对、纠错机制,降低噪音,到达精确度。这一点在人类的认识活动中本来就是这样做的,“耳听为虚”就以“眼见为实”来纠错,小数据一两个来回不可能正确,反复多次大数据比对,就能达到越来越高的精确度,误差率就越来越小。
中国人口世界第一,信息产业市场最大,最有机会发展信息化、大数据和智慧化产业。但中国目前在对大数据的认识上有一种盲目跟外国之风的倾向。对于国外大数据理论,我们应以批判的眼光保持清醒的认识。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23